Gallai–Ramsey Multiplicity
Given two graphs G and H , the general k -colored Gallai–Ramsey number gr k ( G : H ) is defined to be the minimum integer m such that every k -coloring of the complete graph on m vertices contains either a rainbow copy of G or a monochromatic copy of H . Interesting problems arise when one asks how...
Gespeichert in:
Veröffentlicht in: | Graphs and combinatorics 2024, Vol.40 (3), Article 54 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given two graphs
G
and
H
, the
general
k
-colored Gallai–Ramsey number
gr
k
(
G
:
H
)
is defined to be the minimum integer
m
such that every
k
-coloring of the complete graph on
m
vertices contains either a rainbow copy of
G
or a monochromatic copy of
H
. Interesting problems arise when one asks how many such rainbow copy of
G
and monochromatic copy of
H
must occur. The
Gallai–Ramsey multiplicity
GM
k
(
G
:
H
)
is defined as the minimum total number of rainbow copy of
G
and monochromatic copy of
H
in any exact
k
-coloring of
K
gr
k
(
G
:
H
)
. In this paper, we give upper and lower bounds for Gallai–Ramsey multiplicity involving some small rainbow subgraphs. |
---|---|
ISSN: | 0911-0119 1435-5914 |
DOI: | 10.1007/s00373-024-02780-x |