Gallai–Ramsey Multiplicity

Given two graphs G and H , the general k -colored Gallai–Ramsey number gr k ( G : H ) is defined to be the minimum integer m such that every k -coloring of the complete graph on m vertices contains either a rainbow copy of G or a monochromatic copy of H . Interesting problems arise when one asks how...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Graphs and combinatorics 2024, Vol.40 (3), Article 54
1. Verfasser: Mao, Yaping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given two graphs G and H , the general k -colored Gallai–Ramsey number gr k ( G : H ) is defined to be the minimum integer m such that every k -coloring of the complete graph on m vertices contains either a rainbow copy of G or a monochromatic copy of H . Interesting problems arise when one asks how many such rainbow copy of G and monochromatic copy of H must occur. The Gallai–Ramsey multiplicity GM k ( G : H ) is defined as the minimum total number of rainbow copy of G and monochromatic copy of H in any exact k -coloring of K gr k ( G : H ) . In this paper, we give upper and lower bounds for Gallai–Ramsey multiplicity involving some small rainbow subgraphs.
ISSN:0911-0119
1435-5914
DOI:10.1007/s00373-024-02780-x