Bright and Switchable Whiteness in Macro‐Crosslinked Hydrogels

Bright white color is often achieved in nature by the combination of polydisperse scattering structures and high refractive index contrast between the scatterer and the surrounding medium. Similarly, synthetic systems have commonly utilized inorganic materials as the scattering centers to achieve wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2024-04, Vol.12 (11), p.n/a
Hauptverfasser: Eklund, Amanda, Hu, Shanming, Fang, Yuhuang, Savolainen, Henri, Pi, Haotian, Zeng, Hao, Priimagi, Arri, Ikkala, Olli, Zhang, Hang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bright white color is often achieved in nature by the combination of polydisperse scattering structures and high refractive index contrast between the scatterer and the surrounding medium. Similarly, synthetic systems have commonly utilized inorganic materials as the scattering centers to achieve white color, which, however, lacks the ability to switch the optical properties. While hydrogels capable of scattering light are utilized in applications such as smart windows, their reflection properties have remained limited due to the low refractive index contrast between the polymer and water. As a result, thick layers in the millimeter range are often required to achieve reasonable whiteness. Here a hydrogel consisting of a temperature‐responsive poly(N‐isopropylacrylamide) (PNIPAm) and chemically modified agarose used as a chemical macro‐crosslinker is presented. The hydrogel exhibits high whiteness at temperatures above the phase transition (≈31 °C). The reflectance at 800 nm is four times as high as for standard PNIPAm, and a change in transmittance can be induced by laser pulses as short as 30 ms. The macro‐crosslinked structure of this hydrogel provides superior reflectance at a lower thickness compared to reported hydrogel systems, enabling a variety of potential applications including smart windows, responsive displays, optical switches, and camouflage. Macro‐crosslinked hydrogels consisting of poly(N‐isopropylacrylamide) (PNIPAm) and acrylated agarose are prepared. The hydrogels demonstrate significantly enhanced switchable whiteness compared to previously reported hydrogel systems. The efficient switching and scattering of visible light can be used for optical applications such as camouflage or smart windows.
ISSN:2195-1071
2195-1071
DOI:10.1002/adom.202302487