The Covariance Metric in the Blaschke Locus

We prove that the Blaschke locus has the structure of a finite dimensional smooth manifold away from the Teichmüller space and study its Riemannian manifold structure with respect to the covariance metric introduced by Guillarmou, Knieper and Lefeuvre in Guillarmou et al. in (Ergod Theory Dyn Syst 4...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of geometric analysis 2024-05, Vol.34 (5), Article 145
Hauptverfasser: Dai, Xian, Eptaminitakis, Nikolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that the Blaschke locus has the structure of a finite dimensional smooth manifold away from the Teichmüller space and study its Riemannian manifold structure with respect to the covariance metric introduced by Guillarmou, Knieper and Lefeuvre in Guillarmou et al. in (Ergod Theory Dyn Syst 43:974–1022, 2021). We also identify some families of geodesics in the Blaschke locus arising from Hitchin representations for orbifolds and show that they have infinite length with respect to the covariance metric.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-024-01586-w