Liquid Hot Water (LHW) and Hydrothermal Carbonization (HTC) of Coffee Berry Waste: Kinetics, Catalysis, and Optimization for the Synthesis of Platform Chemicals

Colombia is the world’s leading producer of mildly washed arabica coffee and produces 12.6 million bags of green coffee, but at the same time, 784,000 tons of waste biomass are dumped in open fields, of which only 5% is recovered or used. The objective of this project was to evaluate the production...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2024-04, Vol.16 (7), p.2854
Hauptverfasser: Lozano-Pérez, Alejandra Sophia, Guerrero-Fajardo, Carlos Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Colombia is the world’s leading producer of mildly washed arabica coffee and produces 12.6 million bags of green coffee, but at the same time, 784,000 tons of waste biomass are dumped in open fields, of which only 5% is recovered or used. The objective of this project was to evaluate the production of platform chemicals from these coffee wastes for sustainable resource management. To achieve this, biomass characterization was carried out using proximate analysis, ultimate analysis, and structural analysis. Hydrothermal valorization was carried out at a temperature range of 120–180 °C (LHW) and 180–260 °C (HTC) for one hour. The platform chemicals obtained were quantified by HPLC-RI and monitored by pH and conductivity, and the solid fraction was characterized by monitoring the functional groups in IR spectroscopy and elemental analysis. Hydrolysis processes were obtained at 150 °C, production of platform chemicals at 180 °C, and maximum concentration at 180 °C-4 h; over 200 °C, degradation of the products in the liquid fraction starts to take place. Homogeneous basic and acid catalysts were used to improve the yields of the reaction. The kinetics of the hydrolysis of lignocellulosic structures to sugars were also analyzed and described, and reaction orders of 1 (LHW), 3 (HTC), and their respective reaction rate equations were reported.
ISSN:2071-1050
2071-1050
DOI:10.3390/su16072854