Cohomology groups of a new class of Kadison-Singer algebras
Let N be a maximal discrete nest on an infinite-dimensional separable Hilbert space ℋ , ξ = ∑ n = 1 ∞ e n 2 n be a separating vector for the commutant N ′ , E ξ , be the projection from ℋ onto the subspace [ ℂ ξ ] spanned by the vector ξ, and Q be the projection from K = ℋ ⊕ ℋ ⊕ ℋ onto the closed su...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2024-03, Vol.67 (3), p.593-606 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
N
be a maximal discrete nest on an infinite-dimensional separable Hilbert space
ℋ
,
ξ
=
∑
n
=
1
∞
e
n
2
n
be a separating vector for the commutant
N
′
,
E
ξ
, be the projection from
ℋ
onto the subspace
[
ℂ
ξ
]
spanned by the vector ξ, and
Q
be the projection from
K
=
ℋ
⊕
ℋ
⊕
ℋ
onto the closed subspace
{
(
η
,
η
,
η
)
T
:
η
∈
H
}
. Suppose that
ℒ
is the projection lattice generated by the projections
(
E
ξ
0
0
0
0
0
0
0
0
)
,
{
(
E
0
0
0
0
0
0
0
0
)
:
E
∈
N
}
,
(
I
0
0
0
I
0
0
0
0
)
a
n
d
Q
.
We show that
ℒ
is a Kadison-Singer lattice with the trivial commutant. Moreover, we prove that every
n
-th bounded cohomology group
H
n
(
Alg
ℒ
,
B
(
K
)
)
with coefficients in
B
(
K
)
is trivial for
n
⩾ 1. |
---|---|
ISSN: | 1674-7283 1869-1862 |
DOI: | 10.1007/s11425-022-2107-y |