Strategy of Flywheel–Battery Hybrid Energy Storage Based on Optimized Variational Mode Decomposition for Wind Power Suppression

The fluctuation and intermittency of wind power generation seriously affect the stability and security of power grids. Aiming at smoothing wind power fluctuations, this paper proposes a flywheel–battery hybrid energy storage system (HESS) based on optimal variational mode decomposition (VMD). Firstl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2024-04, Vol.13 (7), p.1362
Hauptverfasser: Hou, Enguang, Xu, Yanliang, Tang, Jiarui, Wang, Zhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The fluctuation and intermittency of wind power generation seriously affect the stability and security of power grids. Aiming at smoothing wind power fluctuations, this paper proposes a flywheel–battery hybrid energy storage system (HESS) based on optimal variational mode decomposition (VMD). Firstly, the grid-connected power and charging–discharging power of the HESS are determined based on the sliding average algorithm. Secondly, the VMD algorithm, optimized using long short-term memory (LSTM), is used to decompose the hybrid energy storage power (HESP) into a series of sub-modes with frequencies from low to high. Then, the state of charge of the battery energy storage system and the speed of the flywheel energy storage system are monitored in real time, and the primary power of the HESS is modified according to the rules formulated by fuzzy control. Finally, through a simulation example, it is concluded that the method meets the requirements of smoothing wind power fluctuations and gives full play to the characteristics of energy storage battery and flywheel energy storage to ensure the stable operation of the energy storage system. The method presented in this paper can provide a reference for HESP configuration and control operation strategy formulation.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics13071362