Non-thin rational points for elliptic K3 surfaces

We prove that elliptic K3 surfaces over a number field which admit a second elliptic fibration satisfy the potential Hilbert property. Equivalently, the set of their rational points is not thin after a finite extension of the base field. Furthermore, we classify those families of elliptic K3 surface...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
Hauptverfasser: Gvirtz-Chen, Damián, Mezzedimi, Giacomo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that elliptic K3 surfaces over a number field which admit a second elliptic fibration satisfy the potential Hilbert property. Equivalently, the set of their rational points is not thin after a finite extension of the base field. Furthermore, we classify those families of elliptic K3 surfaces over an algebraically closed field which do not admit a second elliptic fibration.
ISSN:2331-8422