Non-thin rational points for elliptic K3 surfaces
We prove that elliptic K3 surfaces over a number field which admit a second elliptic fibration satisfy the potential Hilbert property. Equivalently, the set of their rational points is not thin after a finite extension of the base field. Furthermore, we classify those families of elliptic K3 surface...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that elliptic K3 surfaces over a number field which admit a second elliptic fibration satisfy the potential Hilbert property. Equivalently, the set of their rational points is not thin after a finite extension of the base field. Furthermore, we classify those families of elliptic K3 surfaces over an algebraically closed field which do not admit a second elliptic fibration. |
---|---|
ISSN: | 2331-8422 |