On some rigidity theorems of Q-curvature

In this paper, we investigate the rigidity of Q-curvature. Specifically, we consider a closed, oriented n -dimensional ( n ≥ 6 ) Riemannian manifold ( M ,  g ) and prove the following results under the condition . (1) If ( M ,  g ) is locally conformally flat with nonnegative Ricci curvature, then (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2024-05, Vol.174 (1-2), p.535-557
Hauptverfasser: Xu, Yiyan, Zhang, Shihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate the rigidity of Q-curvature. Specifically, we consider a closed, oriented n -dimensional ( n ≥ 6 ) Riemannian manifold ( M ,  g ) and prove the following results under the condition . (1) If ( M ,  g ) is locally conformally flat with nonnegative Ricci curvature, then ( M ,  g ) is isometric to a quotient of R n , S n , or R × S n - 1 . (2) If ( M ,  g ) has δ 2 W = 0 with nonnegative sectional curvature, then ( M ,  g ) is isometric to a quotient of the product of Einstein manifolds. Additionally, we investigate some rigidity theorems involving Q-curvature about hypersurfaces in simply-connected space forms. We also show the uniqueness of metrics with constant scalar curvature and constant Q-curvature in a fixed conformal class.
ISSN:0025-2611
1432-1785
DOI:10.1007/s00229-023-01506-2