Existence of a positive solution for a class of Schrödinger logarithmic equations on exterior domains

In this paper we will prove the existence of a positive solution for a class of Schrödinger logarithmic equation of the form. - Δ u + u = Q ( x ) u log u 2 , in Ω , B u = 0 on ∂ Ω , where Ω ⊂ R N , N ≥ 3 , is an exterior domain , i.e., Ω c = R N \ Ω is a bounded smooth domain where B u = u or B u =...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Physik 2024-06, Vol.75 (3), Article 77
Hauptverfasser: Alves, Claudianor O., da Silva, Ismael S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we will prove the existence of a positive solution for a class of Schrödinger logarithmic equation of the form. - Δ u + u = Q ( x ) u log u 2 , in Ω , B u = 0 on ∂ Ω , where Ω ⊂ R N , N ≥ 3 , is an exterior domain , i.e., Ω c = R N \ Ω is a bounded smooth domain where B u = u or B u = ∂ u ∂ ν . We have used new approach that allows us to apply the usual C 1 -variational methods to get a nontrivial solutions for these classes of problems.
ISSN:0044-2275
1420-9039
DOI:10.1007/s00033-024-02212-z