Existence of a positive solution for a class of Schrödinger logarithmic equations on exterior domains
In this paper we will prove the existence of a positive solution for a class of Schrödinger logarithmic equation of the form. - Δ u + u = Q ( x ) u log u 2 , in Ω , B u = 0 on ∂ Ω , where Ω ⊂ R N , N ≥ 3 , is an exterior domain , i.e., Ω c = R N \ Ω is a bounded smooth domain where B u = u or B u =...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 2024-06, Vol.75 (3), Article 77 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we will prove the existence of a positive solution for a class of Schrödinger logarithmic equation of the form.
-
Δ
u
+
u
=
Q
(
x
)
u
log
u
2
,
in
Ω
,
B
u
=
0
on
∂
Ω
,
where
Ω
⊂
R
N
,
N
≥
3
, is an
exterior domain
, i.e.,
Ω
c
=
R
N
\
Ω
is a bounded smooth domain where
B
u
=
u
or
B
u
=
∂
u
∂
ν
. We have used new approach that allows us to apply the usual
C
1
-variational methods to get a nontrivial solutions for these classes of problems. |
---|---|
ISSN: | 0044-2275 1420-9039 |
DOI: | 10.1007/s00033-024-02212-z |