Vacancy enhanced cation ordering enables >15% efficiency in Kesterite solar cells

Atomic disorder, a widespread problem in compound crystalline materials, is a imperative affecting the performance of multi-chalcogenide Cu2ZnSn(S, Se)4 (CZTSSe) photovoltaic device known for its low cost and environmental friendliness. Cu-Zn disorder is particularly abundantly present in CZTSSe due...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
Hauptverfasser: Wang, Jinlin, Lou, Licheng, Kang, Yin, Meng, Fanqi, Xu, Xiao, Jiao, Menghan, Bowen, Zhang, Shi, Jiangjian, Wu, Huijue, Luo, Yanhong, Li, Dongmei, Meng, Qingbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wang, Jinlin
Lou, Licheng
Kang, Yin
Meng, Fanqi
Xu, Xiao
Jiao, Menghan
Bowen, Zhang
Shi, Jiangjian
Wu, Huijue
Luo, Yanhong
Li, Dongmei
Meng, Qingbo
description Atomic disorder, a widespread problem in compound crystalline materials, is a imperative affecting the performance of multi-chalcogenide Cu2ZnSn(S, Se)4 (CZTSSe) photovoltaic device known for its low cost and environmental friendliness. Cu-Zn disorder is particularly abundantly present in CZTSSe due to its extraordinarily low formation energy, having induced high-concentration deep defects and severe charge loss, while its regulation remains challenging due to the contradiction between disorder-order phase transition thermodynamics and atom-interchange kinetics. Herein, through introducing more vacancies in the CZTSSe surface, we explored a vacancy-assisted strategy to reduce the atom-interchange barrier limit to facilitate the Cu-Zn ordering kinetic process. The improvement in the Cu-Zn order degree has significantly reduced the charge loss in the device and helped us realize 15.4% (certified at 14.9%) and 13.5% efficiency (certified at 13.3%) in 0.27 cm2 and 1.1 cm2-area CZTSSe solar cells, respectively, thus bringing substantial advancement for emerging inorganic thin-film photovoltaics.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3035343410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3035343410</sourcerecordid><originalsourceid>FETCH-proquest_journals_30353434103</originalsourceid><addsrcrecordid>eNqNi7EKwjAUAIMgWLT_8EAcC2leo04uoghOgriWNH3VlJBo0g7-vRH8AKcb7m7CMoFYFttKiBnLY-w552K9EVJixi43pZXTbyD3SKQWtBqMd-BDS8G4exKqsRRhV8oVUNcZbeg7GAdnikOKBoLorQqgydq4YNNO2Uj5j3O2PB6u-1PxDP41pqPu_RhcUjVylFhhVXL8r_oAT_w-kA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035343410</pqid></control><display><type>article</type><title>Vacancy enhanced cation ordering enables &gt;15% efficiency in Kesterite solar cells</title><source>Ejournal Publishers (free content)</source><creator>Wang, Jinlin ; Lou, Licheng ; Kang, Yin ; Meng, Fanqi ; Xu, Xiao ; Jiao, Menghan ; Bowen, Zhang ; Shi, Jiangjian ; Wu, Huijue ; Luo, Yanhong ; Li, Dongmei ; Meng, Qingbo</creator><creatorcontrib>Wang, Jinlin ; Lou, Licheng ; Kang, Yin ; Meng, Fanqi ; Xu, Xiao ; Jiao, Menghan ; Bowen, Zhang ; Shi, Jiangjian ; Wu, Huijue ; Luo, Yanhong ; Li, Dongmei ; Meng, Qingbo</creatorcontrib><description>Atomic disorder, a widespread problem in compound crystalline materials, is a imperative affecting the performance of multi-chalcogenide Cu2ZnSn(S, Se)4 (CZTSSe) photovoltaic device known for its low cost and environmental friendliness. Cu-Zn disorder is particularly abundantly present in CZTSSe due to its extraordinarily low formation energy, having induced high-concentration deep defects and severe charge loss, while its regulation remains challenging due to the contradiction between disorder-order phase transition thermodynamics and atom-interchange kinetics. Herein, through introducing more vacancies in the CZTSSe surface, we explored a vacancy-assisted strategy to reduce the atom-interchange barrier limit to facilitate the Cu-Zn ordering kinetic process. The improvement in the Cu-Zn order degree has significantly reduced the charge loss in the device and helped us realize 15.4% (certified at 14.9%) and 13.5% efficiency (certified at 13.3%) in 0.27 cm2 and 1.1 cm2-area CZTSSe solar cells, respectively, thus bringing substantial advancement for emerging inorganic thin-film photovoltaics.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Copper ; Crystal defects ; Free energy ; Heat of formation ; Order disorder ; Phase transitions ; Photovoltaic cells ; Solar cells ; Thin films</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Wang, Jinlin</creatorcontrib><creatorcontrib>Lou, Licheng</creatorcontrib><creatorcontrib>Kang, Yin</creatorcontrib><creatorcontrib>Meng, Fanqi</creatorcontrib><creatorcontrib>Xu, Xiao</creatorcontrib><creatorcontrib>Jiao, Menghan</creatorcontrib><creatorcontrib>Bowen, Zhang</creatorcontrib><creatorcontrib>Shi, Jiangjian</creatorcontrib><creatorcontrib>Wu, Huijue</creatorcontrib><creatorcontrib>Luo, Yanhong</creatorcontrib><creatorcontrib>Li, Dongmei</creatorcontrib><creatorcontrib>Meng, Qingbo</creatorcontrib><title>Vacancy enhanced cation ordering enables &gt;15% efficiency in Kesterite solar cells</title><title>arXiv.org</title><description>Atomic disorder, a widespread problem in compound crystalline materials, is a imperative affecting the performance of multi-chalcogenide Cu2ZnSn(S, Se)4 (CZTSSe) photovoltaic device known for its low cost and environmental friendliness. Cu-Zn disorder is particularly abundantly present in CZTSSe due to its extraordinarily low formation energy, having induced high-concentration deep defects and severe charge loss, while its regulation remains challenging due to the contradiction between disorder-order phase transition thermodynamics and atom-interchange kinetics. Herein, through introducing more vacancies in the CZTSSe surface, we explored a vacancy-assisted strategy to reduce the atom-interchange barrier limit to facilitate the Cu-Zn ordering kinetic process. The improvement in the Cu-Zn order degree has significantly reduced the charge loss in the device and helped us realize 15.4% (certified at 14.9%) and 13.5% efficiency (certified at 13.3%) in 0.27 cm2 and 1.1 cm2-area CZTSSe solar cells, respectively, thus bringing substantial advancement for emerging inorganic thin-film photovoltaics.</description><subject>Copper</subject><subject>Crystal defects</subject><subject>Free energy</subject><subject>Heat of formation</subject><subject>Order disorder</subject><subject>Phase transitions</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Thin films</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi7EKwjAUAIMgWLT_8EAcC2leo04uoghOgriWNH3VlJBo0g7-vRH8AKcb7m7CMoFYFttKiBnLY-w552K9EVJixi43pZXTbyD3SKQWtBqMd-BDS8G4exKqsRRhV8oVUNcZbeg7GAdnikOKBoLorQqgydq4YNNO2Uj5j3O2PB6u-1PxDP41pqPu_RhcUjVylFhhVXL8r_oAT_w-kA</recordid><startdate>20240409</startdate><enddate>20240409</enddate><creator>Wang, Jinlin</creator><creator>Lou, Licheng</creator><creator>Kang, Yin</creator><creator>Meng, Fanqi</creator><creator>Xu, Xiao</creator><creator>Jiao, Menghan</creator><creator>Bowen, Zhang</creator><creator>Shi, Jiangjian</creator><creator>Wu, Huijue</creator><creator>Luo, Yanhong</creator><creator>Li, Dongmei</creator><creator>Meng, Qingbo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240409</creationdate><title>Vacancy enhanced cation ordering enables &gt;15% efficiency in Kesterite solar cells</title><author>Wang, Jinlin ; Lou, Licheng ; Kang, Yin ; Meng, Fanqi ; Xu, Xiao ; Jiao, Menghan ; Bowen, Zhang ; Shi, Jiangjian ; Wu, Huijue ; Luo, Yanhong ; Li, Dongmei ; Meng, Qingbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30353434103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Copper</topic><topic>Crystal defects</topic><topic>Free energy</topic><topic>Heat of formation</topic><topic>Order disorder</topic><topic>Phase transitions</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Thin films</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jinlin</creatorcontrib><creatorcontrib>Lou, Licheng</creatorcontrib><creatorcontrib>Kang, Yin</creatorcontrib><creatorcontrib>Meng, Fanqi</creatorcontrib><creatorcontrib>Xu, Xiao</creatorcontrib><creatorcontrib>Jiao, Menghan</creatorcontrib><creatorcontrib>Bowen, Zhang</creatorcontrib><creatorcontrib>Shi, Jiangjian</creatorcontrib><creatorcontrib>Wu, Huijue</creatorcontrib><creatorcontrib>Luo, Yanhong</creatorcontrib><creatorcontrib>Li, Dongmei</creatorcontrib><creatorcontrib>Meng, Qingbo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jinlin</au><au>Lou, Licheng</au><au>Kang, Yin</au><au>Meng, Fanqi</au><au>Xu, Xiao</au><au>Jiao, Menghan</au><au>Bowen, Zhang</au><au>Shi, Jiangjian</au><au>Wu, Huijue</au><au>Luo, Yanhong</au><au>Li, Dongmei</au><au>Meng, Qingbo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Vacancy enhanced cation ordering enables &gt;15% efficiency in Kesterite solar cells</atitle><jtitle>arXiv.org</jtitle><date>2024-04-09</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Atomic disorder, a widespread problem in compound crystalline materials, is a imperative affecting the performance of multi-chalcogenide Cu2ZnSn(S, Se)4 (CZTSSe) photovoltaic device known for its low cost and environmental friendliness. Cu-Zn disorder is particularly abundantly present in CZTSSe due to its extraordinarily low formation energy, having induced high-concentration deep defects and severe charge loss, while its regulation remains challenging due to the contradiction between disorder-order phase transition thermodynamics and atom-interchange kinetics. Herein, through introducing more vacancies in the CZTSSe surface, we explored a vacancy-assisted strategy to reduce the atom-interchange barrier limit to facilitate the Cu-Zn ordering kinetic process. The improvement in the Cu-Zn order degree has significantly reduced the charge loss in the device and helped us realize 15.4% (certified at 14.9%) and 13.5% efficiency (certified at 13.3%) in 0.27 cm2 and 1.1 cm2-area CZTSSe solar cells, respectively, thus bringing substantial advancement for emerging inorganic thin-film photovoltaics.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_3035343410
source Ejournal Publishers (free content)
subjects Copper
Crystal defects
Free energy
Heat of formation
Order disorder
Phase transitions
Photovoltaic cells
Solar cells
Thin films
title Vacancy enhanced cation ordering enables >15% efficiency in Kesterite solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A17%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Vacancy%20enhanced%20cation%20ordering%20enables%20%3E15%25%20efficiency%20in%20Kesterite%20solar%20cells&rft.jtitle=arXiv.org&rft.au=Wang,%20Jinlin&rft.date=2024-04-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3035343410%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3035343410&rft_id=info:pmid/&rfr_iscdi=true