Vacancy enhanced cation ordering enables >15% efficiency in Kesterite solar cells
Atomic disorder, a widespread problem in compound crystalline materials, is a imperative affecting the performance of multi-chalcogenide Cu2ZnSn(S, Se)4 (CZTSSe) photovoltaic device known for its low cost and environmental friendliness. Cu-Zn disorder is particularly abundantly present in CZTSSe due...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Wang, Jinlin Lou, Licheng Kang, Yin Meng, Fanqi Xu, Xiao Jiao, Menghan Bowen, Zhang Shi, Jiangjian Wu, Huijue Luo, Yanhong Li, Dongmei Meng, Qingbo |
description | Atomic disorder, a widespread problem in compound crystalline materials, is a imperative affecting the performance of multi-chalcogenide Cu2ZnSn(S, Se)4 (CZTSSe) photovoltaic device known for its low cost and environmental friendliness. Cu-Zn disorder is particularly abundantly present in CZTSSe due to its extraordinarily low formation energy, having induced high-concentration deep defects and severe charge loss, while its regulation remains challenging due to the contradiction between disorder-order phase transition thermodynamics and atom-interchange kinetics. Herein, through introducing more vacancies in the CZTSSe surface, we explored a vacancy-assisted strategy to reduce the atom-interchange barrier limit to facilitate the Cu-Zn ordering kinetic process. The improvement in the Cu-Zn order degree has significantly reduced the charge loss in the device and helped us realize 15.4% (certified at 14.9%) and 13.5% efficiency (certified at 13.3%) in 0.27 cm2 and 1.1 cm2-area CZTSSe solar cells, respectively, thus bringing substantial advancement for emerging inorganic thin-film photovoltaics. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3035343410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3035343410</sourcerecordid><originalsourceid>FETCH-proquest_journals_30353434103</originalsourceid><addsrcrecordid>eNqNi7EKwjAUAIMgWLT_8EAcC2leo04uoghOgriWNH3VlJBo0g7-vRH8AKcb7m7CMoFYFttKiBnLY-w552K9EVJixi43pZXTbyD3SKQWtBqMd-BDS8G4exKqsRRhV8oVUNcZbeg7GAdnikOKBoLorQqgydq4YNNO2Uj5j3O2PB6u-1PxDP41pqPu_RhcUjVylFhhVXL8r_oAT_w-kA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035343410</pqid></control><display><type>article</type><title>Vacancy enhanced cation ordering enables >15% efficiency in Kesterite solar cells</title><source>Ejournal Publishers (free content)</source><creator>Wang, Jinlin ; Lou, Licheng ; Kang, Yin ; Meng, Fanqi ; Xu, Xiao ; Jiao, Menghan ; Bowen, Zhang ; Shi, Jiangjian ; Wu, Huijue ; Luo, Yanhong ; Li, Dongmei ; Meng, Qingbo</creator><creatorcontrib>Wang, Jinlin ; Lou, Licheng ; Kang, Yin ; Meng, Fanqi ; Xu, Xiao ; Jiao, Menghan ; Bowen, Zhang ; Shi, Jiangjian ; Wu, Huijue ; Luo, Yanhong ; Li, Dongmei ; Meng, Qingbo</creatorcontrib><description>Atomic disorder, a widespread problem in compound crystalline materials, is a imperative affecting the performance of multi-chalcogenide Cu2ZnSn(S, Se)4 (CZTSSe) photovoltaic device known for its low cost and environmental friendliness. Cu-Zn disorder is particularly abundantly present in CZTSSe due to its extraordinarily low formation energy, having induced high-concentration deep defects and severe charge loss, while its regulation remains challenging due to the contradiction between disorder-order phase transition thermodynamics and atom-interchange kinetics. Herein, through introducing more vacancies in the CZTSSe surface, we explored a vacancy-assisted strategy to reduce the atom-interchange barrier limit to facilitate the Cu-Zn ordering kinetic process. The improvement in the Cu-Zn order degree has significantly reduced the charge loss in the device and helped us realize 15.4% (certified at 14.9%) and 13.5% efficiency (certified at 13.3%) in 0.27 cm2 and 1.1 cm2-area CZTSSe solar cells, respectively, thus bringing substantial advancement for emerging inorganic thin-film photovoltaics.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Copper ; Crystal defects ; Free energy ; Heat of formation ; Order disorder ; Phase transitions ; Photovoltaic cells ; Solar cells ; Thin films</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Wang, Jinlin</creatorcontrib><creatorcontrib>Lou, Licheng</creatorcontrib><creatorcontrib>Kang, Yin</creatorcontrib><creatorcontrib>Meng, Fanqi</creatorcontrib><creatorcontrib>Xu, Xiao</creatorcontrib><creatorcontrib>Jiao, Menghan</creatorcontrib><creatorcontrib>Bowen, Zhang</creatorcontrib><creatorcontrib>Shi, Jiangjian</creatorcontrib><creatorcontrib>Wu, Huijue</creatorcontrib><creatorcontrib>Luo, Yanhong</creatorcontrib><creatorcontrib>Li, Dongmei</creatorcontrib><creatorcontrib>Meng, Qingbo</creatorcontrib><title>Vacancy enhanced cation ordering enables >15% efficiency in Kesterite solar cells</title><title>arXiv.org</title><description>Atomic disorder, a widespread problem in compound crystalline materials, is a imperative affecting the performance of multi-chalcogenide Cu2ZnSn(S, Se)4 (CZTSSe) photovoltaic device known for its low cost and environmental friendliness. Cu-Zn disorder is particularly abundantly present in CZTSSe due to its extraordinarily low formation energy, having induced high-concentration deep defects and severe charge loss, while its regulation remains challenging due to the contradiction between disorder-order phase transition thermodynamics and atom-interchange kinetics. Herein, through introducing more vacancies in the CZTSSe surface, we explored a vacancy-assisted strategy to reduce the atom-interchange barrier limit to facilitate the Cu-Zn ordering kinetic process. The improvement in the Cu-Zn order degree has significantly reduced the charge loss in the device and helped us realize 15.4% (certified at 14.9%) and 13.5% efficiency (certified at 13.3%) in 0.27 cm2 and 1.1 cm2-area CZTSSe solar cells, respectively, thus bringing substantial advancement for emerging inorganic thin-film photovoltaics.</description><subject>Copper</subject><subject>Crystal defects</subject><subject>Free energy</subject><subject>Heat of formation</subject><subject>Order disorder</subject><subject>Phase transitions</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Thin films</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi7EKwjAUAIMgWLT_8EAcC2leo04uoghOgriWNH3VlJBo0g7-vRH8AKcb7m7CMoFYFttKiBnLY-w552K9EVJixi43pZXTbyD3SKQWtBqMd-BDS8G4exKqsRRhV8oVUNcZbeg7GAdnikOKBoLorQqgydq4YNNO2Uj5j3O2PB6u-1PxDP41pqPu_RhcUjVylFhhVXL8r_oAT_w-kA</recordid><startdate>20240409</startdate><enddate>20240409</enddate><creator>Wang, Jinlin</creator><creator>Lou, Licheng</creator><creator>Kang, Yin</creator><creator>Meng, Fanqi</creator><creator>Xu, Xiao</creator><creator>Jiao, Menghan</creator><creator>Bowen, Zhang</creator><creator>Shi, Jiangjian</creator><creator>Wu, Huijue</creator><creator>Luo, Yanhong</creator><creator>Li, Dongmei</creator><creator>Meng, Qingbo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240409</creationdate><title>Vacancy enhanced cation ordering enables >15% efficiency in Kesterite solar cells</title><author>Wang, Jinlin ; Lou, Licheng ; Kang, Yin ; Meng, Fanqi ; Xu, Xiao ; Jiao, Menghan ; Bowen, Zhang ; Shi, Jiangjian ; Wu, Huijue ; Luo, Yanhong ; Li, Dongmei ; Meng, Qingbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30353434103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Copper</topic><topic>Crystal defects</topic><topic>Free energy</topic><topic>Heat of formation</topic><topic>Order disorder</topic><topic>Phase transitions</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Thin films</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jinlin</creatorcontrib><creatorcontrib>Lou, Licheng</creatorcontrib><creatorcontrib>Kang, Yin</creatorcontrib><creatorcontrib>Meng, Fanqi</creatorcontrib><creatorcontrib>Xu, Xiao</creatorcontrib><creatorcontrib>Jiao, Menghan</creatorcontrib><creatorcontrib>Bowen, Zhang</creatorcontrib><creatorcontrib>Shi, Jiangjian</creatorcontrib><creatorcontrib>Wu, Huijue</creatorcontrib><creatorcontrib>Luo, Yanhong</creatorcontrib><creatorcontrib>Li, Dongmei</creatorcontrib><creatorcontrib>Meng, Qingbo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jinlin</au><au>Lou, Licheng</au><au>Kang, Yin</au><au>Meng, Fanqi</au><au>Xu, Xiao</au><au>Jiao, Menghan</au><au>Bowen, Zhang</au><au>Shi, Jiangjian</au><au>Wu, Huijue</au><au>Luo, Yanhong</au><au>Li, Dongmei</au><au>Meng, Qingbo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Vacancy enhanced cation ordering enables >15% efficiency in Kesterite solar cells</atitle><jtitle>arXiv.org</jtitle><date>2024-04-09</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Atomic disorder, a widespread problem in compound crystalline materials, is a imperative affecting the performance of multi-chalcogenide Cu2ZnSn(S, Se)4 (CZTSSe) photovoltaic device known for its low cost and environmental friendliness. Cu-Zn disorder is particularly abundantly present in CZTSSe due to its extraordinarily low formation energy, having induced high-concentration deep defects and severe charge loss, while its regulation remains challenging due to the contradiction between disorder-order phase transition thermodynamics and atom-interchange kinetics. Herein, through introducing more vacancies in the CZTSSe surface, we explored a vacancy-assisted strategy to reduce the atom-interchange barrier limit to facilitate the Cu-Zn ordering kinetic process. The improvement in the Cu-Zn order degree has significantly reduced the charge loss in the device and helped us realize 15.4% (certified at 14.9%) and 13.5% efficiency (certified at 13.3%) in 0.27 cm2 and 1.1 cm2-area CZTSSe solar cells, respectively, thus bringing substantial advancement for emerging inorganic thin-film photovoltaics.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3035343410 |
source | Ejournal Publishers (free content) |
subjects | Copper Crystal defects Free energy Heat of formation Order disorder Phase transitions Photovoltaic cells Solar cells Thin films |
title | Vacancy enhanced cation ordering enables >15% efficiency in Kesterite solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A17%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Vacancy%20enhanced%20cation%20ordering%20enables%20%3E15%25%20efficiency%20in%20Kesterite%20solar%20cells&rft.jtitle=arXiv.org&rft.au=Wang,%20Jinlin&rft.date=2024-04-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3035343410%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3035343410&rft_id=info:pmid/&rfr_iscdi=true |