Vacancy enhanced cation ordering enables >15% efficiency in Kesterite solar cells

Atomic disorder, a widespread problem in compound crystalline materials, is a imperative affecting the performance of multi-chalcogenide Cu2ZnSn(S, Se)4 (CZTSSe) photovoltaic device known for its low cost and environmental friendliness. Cu-Zn disorder is particularly abundantly present in CZTSSe due...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
Hauptverfasser: Wang, Jinlin, Lou, Licheng, Kang, Yin, Meng, Fanqi, Xu, Xiao, Jiao, Menghan, Bowen, Zhang, Shi, Jiangjian, Wu, Huijue, Luo, Yanhong, Li, Dongmei, Meng, Qingbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Atomic disorder, a widespread problem in compound crystalline materials, is a imperative affecting the performance of multi-chalcogenide Cu2ZnSn(S, Se)4 (CZTSSe) photovoltaic device known for its low cost and environmental friendliness. Cu-Zn disorder is particularly abundantly present in CZTSSe due to its extraordinarily low formation energy, having induced high-concentration deep defects and severe charge loss, while its regulation remains challenging due to the contradiction between disorder-order phase transition thermodynamics and atom-interchange kinetics. Herein, through introducing more vacancies in the CZTSSe surface, we explored a vacancy-assisted strategy to reduce the atom-interchange barrier limit to facilitate the Cu-Zn ordering kinetic process. The improvement in the Cu-Zn order degree has significantly reduced the charge loss in the device and helped us realize 15.4% (certified at 14.9%) and 13.5% efficiency (certified at 13.3%) in 0.27 cm2 and 1.1 cm2-area CZTSSe solar cells, respectively, thus bringing substantial advancement for emerging inorganic thin-film photovoltaics.
ISSN:2331-8422