A linear active disturbance rejection control technique for frequency control of networked microgrids

In this paper, the load frequency control (LFC) for networked microgrids in the presence of delayed electric vehicles (EVs) aggregator and renewable energy sources (RESs) like photovoltaic, wind turbine and fuel cell have been investigated. A linear active disturbance rejection control (LADRC) techn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy systems (Berlin. Periodical) 2024-05, Vol.15 (2), p.807-826
Hauptverfasser: Taghizadegan, Navid, Babaei, Farshad, Safari, Amin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the load frequency control (LFC) for networked microgrids in the presence of delayed electric vehicles (EVs) aggregator and renewable energy sources (RESs) like photovoltaic, wind turbine and fuel cell have been investigated. A linear active disturbance rejection control (LADRC) technique based on the extended state observer (ESO) and nonlinear feedback control law (NLFCL) is proposed to eliminate the frequency variations resulted from the load disturbance and uncertainty of RESs. Since the LADRC parameters could be designed by the ESO and controller bandwidths, the presented controller could have similar performance with the fixed-structured controller. Also, the IMC technique is used for the robust tuning of the LADRC controller. The simulation is carried out on the three-area LFC scheme containing EVs aggregator, RESs, and fuel cell. According to simulation results, the LADRC controller has fewer frequency variations in contrast to other methods presented in the case studies.
ISSN:1868-3967
1868-3975
DOI:10.1007/s12667-023-00563-6