AKVSR: Audio Knowledge Empowered Visual Speech Recognition by Compressing Audio Knowledge of a Pretrained Model

Visual Speech Recognition (VSR) is the task of predicting spoken words from silent lip movements. VSR is regarded as a challenging task because of the insufficient information on lip movements. In this article, we propose an Audio Knowledge empowered Visual Speech Recognition framework (AKVSR) to co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2024, Vol.26, p.6462-6474
Hauptverfasser: Yeo, Jeong Hun, Kim, Minsu, Choi, Jeongsoo, Kim, Dae Hoe, Ro, Yong Man
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Visual Speech Recognition (VSR) is the task of predicting spoken words from silent lip movements. VSR is regarded as a challenging task because of the insufficient information on lip movements. In this article, we propose an Audio Knowledge empowered Visual Speech Recognition framework (AKVSR) to complement the insufficient speech information of visual modality by using audio modality. Different from the previous methods, the proposed AKVSR 1) utilizes rich audio knowledge encoded by a large-scale pretrained audio model, 2) saves the linguistic information of audio knowledge in compact audio memory by discarding the non-linguistic information from the audio through quantization, and 3) includes Audio Bridging Module which can find the best-matched audio features from the compact audio memory, which makes our training possible without audio inputs, once after the compact audio memory is composed. We validate the effectiveness of the proposed method through extensive experiments, and achieve new state-of-the-art performances on the widely-used LRS3 dataset.
ISSN:1520-9210
1941-0077
DOI:10.1109/TMM.2024.3352388