Remarks on the Possible Blow-Up Conditions via One Velocity Component for the 3D Navier–Stokes Equations

In this paper, we study some blow-up conditions via one velocity component for the 3D incompressible Navier–Stokes equations in the framework of scaling invariant anisotropic Besov spaces. In particular, we prove that if one component of the velocity remains small enough in the space H ˙ 1 2 , then...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of geometric analysis 2024-06, Vol.34 (6), Article 170
Hauptverfasser: Guo, Zhengguang, O, Chol-Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study some blow-up conditions via one velocity component for the 3D incompressible Navier–Stokes equations in the framework of scaling invariant anisotropic Besov spaces. In particular, we prove that if one component of the velocity remains small enough in the space H ˙ 1 2 , then there is no blow-up. This result improves the previous ones by Chemin et al. (Commun Partial Differ Equ 44:1387-1405, 2019) and Houamed (J Differ Equ 275:116–138, 2021).
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-024-01613-w