Codescent and Bicolimits of Pseudo-Algebras

We categorify cocompleteness results of monad theory, in the context of pseudomonads. We first prove a general result establishing that, in any 2-category, weighted bicolimits can be constructed from oplax bicolimits and bicoequalizers of codescent objects. After prerequisites on pseudomonads and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied categorical structures 2024, Vol.32 (2)
1. Verfasser: Osmond, Axel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Applied categorical structures
container_volume 32
creator Osmond, Axel
description We categorify cocompleteness results of monad theory, in the context of pseudomonads. We first prove a general result establishing that, in any 2-category, weighted bicolimits can be constructed from oplax bicolimits and bicoequalizers of codescent objects. After prerequisites on pseudomonads and their pseudo-algebras, we give a 2-dimensional Linton theorem reducing bicocompleteness of 2-categories of pseudo-algebras to existence of bicoequalizers of codescent objects. Finally we prove this condition to be fulfilled in the case of a bifinitary pseudomonad, ensuring bicocompleteness.
doi_str_mv 10.1007/s10485-024-09765-0
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_3035136128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3035136128</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-eda142c8698ecbce0efd8d1e55de5cdfdb8f1d2cc655c62fe0e907d51f2c0a9f3</originalsourceid><addsrcrecordid>eNpFkMFKxDAURYMoWEd_wFXBpURfkqZNlmNxVBjQha5Dm7wMHWpTm_b_jVZwde_icC8cQq4Z3DGA6j4yKJSkwAsKuipTOyEZkxWnGrQ8JRloXlGuJD8nFzEeAUCXGjJyWweH0eIw583g8ofOhr777OaYB5-_RVxcoNv-gO3UxEty5ps-4tVfbsjH7vG9fqb716eXerunY3qcKbqGFdyqUiu0rUVA75RjKKVDaZ13rfLMcWtLKW3JfQI0VE4yzy002osNuVl3xyl8LRhncwzLNKRLI0BIJkrGVaLESsVx6oYDTv8UA_NjxaxWTLJifq0YEN884lVI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035136128</pqid></control><display><type>article</type><title>Codescent and Bicolimits of Pseudo-Algebras</title><source>SpringerNature Journals</source><creator>Osmond, Axel</creator><creatorcontrib>Osmond, Axel</creatorcontrib><description>We categorify cocompleteness results of monad theory, in the context of pseudomonads. We first prove a general result establishing that, in any 2-category, weighted bicolimits can be constructed from oplax bicolimits and bicoequalizers of codescent objects. After prerequisites on pseudomonads and their pseudo-algebras, we give a 2-dimensional Linton theorem reducing bicocompleteness of 2-categories of pseudo-algebras to existence of bicoequalizers of codescent objects. Finally we prove this condition to be fulfilled in the case of a bifinitary pseudomonad, ensuring bicocompleteness.</description><identifier>ISSN: 0927-2852</identifier><identifier>EISSN: 1572-9095</identifier><identifier>DOI: 10.1007/s10485-024-09765-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebra ; Convex and Discrete Geometry ; Existence theorems ; Geometry ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Theory of Computation</subject><ispartof>Applied categorical structures, 2024, Vol.32 (2)</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10485-024-09765-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10485-024-09765-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Osmond, Axel</creatorcontrib><title>Codescent and Bicolimits of Pseudo-Algebras</title><title>Applied categorical structures</title><addtitle>Appl Categor Struct</addtitle><description>We categorify cocompleteness results of monad theory, in the context of pseudomonads. We first prove a general result establishing that, in any 2-category, weighted bicolimits can be constructed from oplax bicolimits and bicoequalizers of codescent objects. After prerequisites on pseudomonads and their pseudo-algebras, we give a 2-dimensional Linton theorem reducing bicocompleteness of 2-categories of pseudo-algebras to existence of bicoequalizers of codescent objects. Finally we prove this condition to be fulfilled in the case of a bifinitary pseudomonad, ensuring bicocompleteness.</description><subject>Algebra</subject><subject>Convex and Discrete Geometry</subject><subject>Existence theorems</subject><subject>Geometry</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theory of Computation</subject><issn>0927-2852</issn><issn>1572-9095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkMFKxDAURYMoWEd_wFXBpURfkqZNlmNxVBjQha5Dm7wMHWpTm_b_jVZwde_icC8cQq4Z3DGA6j4yKJSkwAsKuipTOyEZkxWnGrQ8JRloXlGuJD8nFzEeAUCXGjJyWweH0eIw583g8ofOhr777OaYB5-_RVxcoNv-gO3UxEty5ps-4tVfbsjH7vG9fqb716eXerunY3qcKbqGFdyqUiu0rUVA75RjKKVDaZ13rfLMcWtLKW3JfQI0VE4yzy002osNuVl3xyl8LRhncwzLNKRLI0BIJkrGVaLESsVx6oYDTv8UA_NjxaxWTLJifq0YEN884lVI</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Osmond, Axel</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>2024</creationdate><title>Codescent and Bicolimits of Pseudo-Algebras</title><author>Osmond, Axel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-eda142c8698ecbce0efd8d1e55de5cdfdb8f1d2cc655c62fe0e907d51f2c0a9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Convex and Discrete Geometry</topic><topic>Existence theorems</topic><topic>Geometry</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osmond, Axel</creatorcontrib><jtitle>Applied categorical structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osmond, Axel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Codescent and Bicolimits of Pseudo-Algebras</atitle><jtitle>Applied categorical structures</jtitle><stitle>Appl Categor Struct</stitle><date>2024</date><risdate>2024</risdate><volume>32</volume><issue>2</issue><issn>0927-2852</issn><eissn>1572-9095</eissn><abstract>We categorify cocompleteness results of monad theory, in the context of pseudomonads. We first prove a general result establishing that, in any 2-category, weighted bicolimits can be constructed from oplax bicolimits and bicoequalizers of codescent objects. After prerequisites on pseudomonads and their pseudo-algebras, we give a 2-dimensional Linton theorem reducing bicocompleteness of 2-categories of pseudo-algebras to existence of bicoequalizers of codescent objects. Finally we prove this condition to be fulfilled in the case of a bifinitary pseudomonad, ensuring bicocompleteness.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10485-024-09765-0</doi></addata></record>
fulltext fulltext
identifier ISSN: 0927-2852
ispartof Applied categorical structures, 2024, Vol.32 (2)
issn 0927-2852
1572-9095
language eng
recordid cdi_proquest_journals_3035136128
source SpringerNature Journals
subjects Algebra
Convex and Discrete Geometry
Existence theorems
Geometry
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Theory of Computation
title Codescent and Bicolimits of Pseudo-Algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A48%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Codescent%20and%20Bicolimits%20of%20Pseudo-Algebras&rft.jtitle=Applied%20categorical%20structures&rft.au=Osmond,%20Axel&rft.date=2024&rft.volume=32&rft.issue=2&rft.issn=0927-2852&rft.eissn=1572-9095&rft_id=info:doi/10.1007/s10485-024-09765-0&rft_dat=%3Cproquest_sprin%3E3035136128%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3035136128&rft_id=info:pmid/&rfr_iscdi=true