Codescent and Bicolimits of Pseudo-Algebras
We categorify cocompleteness results of monad theory, in the context of pseudomonads. We first prove a general result establishing that, in any 2-category, weighted bicolimits can be constructed from oplax bicolimits and bicoequalizers of codescent objects. After prerequisites on pseudomonads and th...
Gespeichert in:
Veröffentlicht in: | Applied categorical structures 2024, Vol.32 (2) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We categorify cocompleteness results of monad theory, in the context of pseudomonads. We first prove a general result establishing that, in any 2-category, weighted bicolimits can be constructed from oplax bicolimits and bicoequalizers of codescent objects. After prerequisites on pseudomonads and their pseudo-algebras, we give a 2-dimensional Linton theorem reducing bicocompleteness of 2-categories of pseudo-algebras to existence of bicoequalizers of codescent objects. Finally we prove this condition to be fulfilled in the case of a bifinitary pseudomonad, ensuring bicocompleteness. |
---|---|
ISSN: | 0927-2852 1572-9095 |
DOI: | 10.1007/s10485-024-09765-0 |