Ridge estimation of uncertain vector autoregressive model with imprecise data

Uncertain vector autoregressive model (UVAR) is used to describe the variational relationship between multivariable time series. Based on the imprecise observations, the issue of predicting the future data accurately attracts more and more scholars attentions. This paper takes the ridge estimation i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ambient intelligence and humanized computing 2024-04, Vol.15 (4), p.2143-2152
Hauptverfasser: Shi, Yuxin, Zhang, Ling, Sheng, Yuhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Uncertain vector autoregressive model (UVAR) is used to describe the variational relationship between multivariable time series. Based on the imprecise observations, the issue of predicting the future data accurately attracts more and more scholars attentions. This paper takes the ridge estimation into consideration and applies it into uncertain vector autoregressive model. In order to determine the shrinkage parameter, we use the cross-validation to solve this problem. On this basis, we conduct the residual analysis. A point estimation and a confidence interval are given to predict the future value. Finally, two numerical examples are applyied to clarify the feasibility and validity of the ridge estimation, compared with the least square estimation.
ISSN:1868-5137
1868-5145
DOI:10.1007/s12652-023-04743-1