ProLoc: Robust Location Proofs in Hindsight
Many online services rely on self-reported locations of user devices like smartphones. To mitigate harm from falsified self-reported locations, the literature has proposed location proof services (LPSs), which provide proof of a device's location by corroborating its self-reported location usin...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many online services rely on self-reported locations of user devices like smartphones. To mitigate harm from falsified self-reported locations, the literature has proposed location proof services (LPSs), which provide proof of a device's location by corroborating its self-reported location using short-range radio contacts with either trusted infrastructure or nearby devices that also report their locations. This paper presents ProLoc, a new LPS that extends prior work in two ways. First, ProLoc relaxes prior work's proofs that a device was at a given location to proofs that a device was within distance "d" of a given location. We argue that these weaker proofs, which we call "region proofs", are important because (i) region proofs can be constructed with few requirements on device reporting behavior as opposed to precise location proofs, and (ii) a quantitative bound on a device's distance from a known epicenter is useful for many applications. For example, in the context of citizen reporting near an unexpected event (earthquake, violent protest, etc.), knowing the verified distances of the reporting devices from the event's epicenter would be valuable for ranking the reports by relevance or flagging fake reports. Second, ProLoc includes a novel mechanism to prevent collusion attacks where a set of attacker-controlled devices corroborate each others' false locations. Ours is the first mechanism that does not need additional infrastructure to handle attacks with made-up devices, which an attacker can create in any number at any location without any cost. For this, we rely on a variant of TrustRank applied to the self-reported trajectories and encounters of devices. Our goal is to prevent retroactive attacks where the adversary cannot predict ahead of time which fake location it will want to report, which is the case for the reporting of unexpected events. |
---|---|
ISSN: | 2331-8422 |