Floer homology and square pegs

We construct a version of Lagrangian Floer homology whose chain complex is generated by the inscriptions of a rectangle into a real analytic Jordan curve. By using its associated spectral invariants, we establish that a rectifiable Jordan curve admits inscriptions of a whole interval of rectangles....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Greene, Joshua Evan, Lobb, Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct a version of Lagrangian Floer homology whose chain complex is generated by the inscriptions of a rectangle into a real analytic Jordan curve. By using its associated spectral invariants, we establish that a rectifiable Jordan curve admits inscriptions of a whole interval of rectangles. In particular, it inscribes a square if the area it encloses is more than half that of a circle of equal diameter.
ISSN:2331-8422