Floer homology and square pegs
We construct a version of Lagrangian Floer homology whose chain complex is generated by the inscriptions of a rectangle into a real analytic Jordan curve. By using its associated spectral invariants, we establish that a rectifiable Jordan curve admits inscriptions of a whole interval of rectangles....
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct a version of Lagrangian Floer homology whose chain complex is generated by the inscriptions of a rectangle into a real analytic Jordan curve. By using its associated spectral invariants, we establish that a rectifiable Jordan curve admits inscriptions of a whole interval of rectangles. In particular, it inscribes a square if the area it encloses is more than half that of a circle of equal diameter. |
---|---|
ISSN: | 2331-8422 |