A Bollobás-type problem: from root systems to Erdős-Ko-Rado

Motivated by an Erdős--Ko--Rado type problem on sets of strongly orthogonal roots in the \(A_{\ell}\) root system, we estimate bounds for the size of a family of pairs \((A_{i}, B_{i})\) of \(k\)-subsets in \(\{ 1, 2, \ldots, n\}\) such that \(A_{i} \cap B_{j}= \emptyset\) and \(|A_{i} \cap A_{j}| +...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
Hauptverfasser: Browne, Patrick J, Gashi, Qëndrim R, Padraig Ó Catháin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Browne, Patrick J
Gashi, Qëndrim R
Padraig Ó Catháin
description Motivated by an Erdős--Ko--Rado type problem on sets of strongly orthogonal roots in the \(A_{\ell}\) root system, we estimate bounds for the size of a family of pairs \((A_{i}, B_{i})\) of \(k\)-subsets in \(\{ 1, 2, \ldots, n\}\) such that \(A_{i} \cap B_{j}= \emptyset\) and \(|A_{i} \cap A_{j}| + |B_{i} \cap B_{j}| = k\) for all \(i \neq j\). This is reminiscent of a classic problem of Bollobás. We provide upper and lower bounds for this problem, relying on classical results of extremal combinatorics and an explicit construction using the incidence matrix of a finite projective plane.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3034836758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3034836758</sourcerecordid><originalsourceid>FETCH-proquest_journals_30348367583</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwdVRwys_JyU86vLBYt6SyIFWhoCg_KSc110ohrSg_V6EoP79EobiyuCQ1t1ihJF_BtSjl6MRiXe983aDElHweBta0xJziVF4ozc2g7OYa4uyhCzSksDS1uCQ-K7-0KA8oFW9sYGxiYWxmbmphTJwqAL9YOH0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3034836758</pqid></control><display><type>article</type><title>A Bollobás-type problem: from root systems to Erdős-Ko-Rado</title><source>Free E- Journals</source><creator>Browne, Patrick J ; Gashi, Qëndrim R ; Padraig Ó Catháin</creator><creatorcontrib>Browne, Patrick J ; Gashi, Qëndrim R ; Padraig Ó Catháin</creatorcontrib><description>Motivated by an Erdős--Ko--Rado type problem on sets of strongly orthogonal roots in the \(A_{\ell}\) root system, we estimate bounds for the size of a family of pairs \((A_{i}, B_{i})\) of \(k\)-subsets in \(\{ 1, 2, \ldots, n\}\) such that \(A_{i} \cap B_{j}= \emptyset\) and \(|A_{i} \cap A_{j}| + |B_{i} \cap B_{j}| = k\) for all \(i \neq j\). This is reminiscent of a classic problem of Bollobás. We provide upper and lower bounds for this problem, relying on classical results of extremal combinatorics and an explicit construction using the incidence matrix of a finite projective plane.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Combinatorial analysis ; Lower bounds</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Browne, Patrick J</creatorcontrib><creatorcontrib>Gashi, Qëndrim R</creatorcontrib><creatorcontrib>Padraig Ó Catháin</creatorcontrib><title>A Bollobás-type problem: from root systems to Erdős-Ko-Rado</title><title>arXiv.org</title><description>Motivated by an Erdős--Ko--Rado type problem on sets of strongly orthogonal roots in the \(A_{\ell}\) root system, we estimate bounds for the size of a family of pairs \((A_{i}, B_{i})\) of \(k\)-subsets in \(\{ 1, 2, \ldots, n\}\) such that \(A_{i} \cap B_{j}= \emptyset\) and \(|A_{i} \cap A_{j}| + |B_{i} \cap B_{j}| = k\) for all \(i \neq j\). This is reminiscent of a classic problem of Bollobás. We provide upper and lower bounds for this problem, relying on classical results of extremal combinatorics and an explicit construction using the incidence matrix of a finite projective plane.</description><subject>Combinatorial analysis</subject><subject>Lower bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwdVRwys_JyU86vLBYt6SyIFWhoCg_KSc110ohrSg_V6EoP79EobiyuCQ1t1ihJF_BtSjl6MRiXe983aDElHweBta0xJziVF4ozc2g7OYa4uyhCzSksDS1uCQ-K7-0KA8oFW9sYGxiYWxmbmphTJwqAL9YOH0</recordid><startdate>20240407</startdate><enddate>20240407</enddate><creator>Browne, Patrick J</creator><creator>Gashi, Qëndrim R</creator><creator>Padraig Ó Catháin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240407</creationdate><title>A Bollobás-type problem: from root systems to Erdős-Ko-Rado</title><author>Browne, Patrick J ; Gashi, Qëndrim R ; Padraig Ó Catháin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30348367583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Combinatorial analysis</topic><topic>Lower bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Browne, Patrick J</creatorcontrib><creatorcontrib>Gashi, Qëndrim R</creatorcontrib><creatorcontrib>Padraig Ó Catháin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Browne, Patrick J</au><au>Gashi, Qëndrim R</au><au>Padraig Ó Catháin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Bollobás-type problem: from root systems to Erdős-Ko-Rado</atitle><jtitle>arXiv.org</jtitle><date>2024-04-07</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Motivated by an Erdős--Ko--Rado type problem on sets of strongly orthogonal roots in the \(A_{\ell}\) root system, we estimate bounds for the size of a family of pairs \((A_{i}, B_{i})\) of \(k\)-subsets in \(\{ 1, 2, \ldots, n\}\) such that \(A_{i} \cap B_{j}= \emptyset\) and \(|A_{i} \cap A_{j}| + |B_{i} \cap B_{j}| = k\) for all \(i \neq j\). This is reminiscent of a classic problem of Bollobás. We provide upper and lower bounds for this problem, relying on classical results of extremal combinatorics and an explicit construction using the incidence matrix of a finite projective plane.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_3034836758
source Free E- Journals
subjects Combinatorial analysis
Lower bounds
title A Bollobás-type problem: from root systems to Erdős-Ko-Rado
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A32%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Bollob%C3%A1s-type%20problem:%20from%20root%20systems%20to%20Erd%C5%91s-Ko-Rado&rft.jtitle=arXiv.org&rft.au=Browne,%20Patrick%20J&rft.date=2024-04-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3034836758%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3034836758&rft_id=info:pmid/&rfr_iscdi=true