A Bollobás-type problem: from root systems to Erdős-Ko-Rado
Motivated by an Erdős--Ko--Rado type problem on sets of strongly orthogonal roots in the \(A_{\ell}\) root system, we estimate bounds for the size of a family of pairs \((A_{i}, B_{i})\) of \(k\)-subsets in \(\{ 1, 2, \ldots, n\}\) such that \(A_{i} \cap B_{j}= \emptyset\) and \(|A_{i} \cap A_{j}| +...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Motivated by an Erdős--Ko--Rado type problem on sets of strongly orthogonal roots in the \(A_{\ell}\) root system, we estimate bounds for the size of a family of pairs \((A_{i}, B_{i})\) of \(k\)-subsets in \(\{ 1, 2, \ldots, n\}\) such that \(A_{i} \cap B_{j}= \emptyset\) and \(|A_{i} \cap A_{j}| + |B_{i} \cap B_{j}| = k\) for all \(i \neq j\). This is reminiscent of a classic problem of Bollobás. We provide upper and lower bounds for this problem, relying on classical results of extremal combinatorics and an explicit construction using the incidence matrix of a finite projective plane. |
---|---|
ISSN: | 2331-8422 |