SARIS: Accelerating Stencil Computations on Energy-Efficient RISC-V Compute Clusters with Indirect Stream Registers
Stencil codes are performance-critical in many compute-intensive applications, but suffer from significant address calculation and irregular memory access overheads. This work presents SARIS, a general and highly flexible methodology for stencil acceleration using register-mapped indirect streams. W...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Stencil codes are performance-critical in many compute-intensive applications, but suffer from significant address calculation and irregular memory access overheads. This work presents SARIS, a general and highly flexible methodology for stencil acceleration using register-mapped indirect streams. We demonstrate SARIS for various stencil codes on an eight-core RISC-V compute cluster with indirect stream registers, achieving significant speedups of 2.72x, near-ideal FPU utilizations of 81%, and energy efficiency improvements of 1.58x over an RV32G baseline on average. Scaling out to a 256-core manycore system, we estimate an average FPU utilization of 64%, an average speedup of 2.14x, and up to 15% higher fractions of peak compute than a leading GPU code generator. |
---|---|
ISSN: | 2331-8422 |