Language-Independent Representations Improve Zero-Shot Summarization

Finetuning pretrained models on downstream generation tasks often leads to catastrophic forgetting in zero-shot conditions. In this work, we focus on summarization and tackle the problem through the lens of language-independent representations. After training on monolingual summarization, we perform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
Hauptverfasser: Solovyev, Vladimir, Liu, Danni, Niehues, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Finetuning pretrained models on downstream generation tasks often leads to catastrophic forgetting in zero-shot conditions. In this work, we focus on summarization and tackle the problem through the lens of language-independent representations. After training on monolingual summarization, we perform zero-shot transfer to new languages or language pairs. We first show naively finetuned models are highly language-specific in both output behavior and internal representations, resulting in poor zero-shot performance. Next, we propose query-key (QK) finetuning to decouple task-specific knowledge from the pretrained language generation abilities. Then, after showing downsides of the standard adversarial language classifier, we propose a balanced variant that more directly enforces language-agnostic representations. Moreover, our qualitative analyses show removing source language identity correlates to zero-shot summarization performance. Our code is openly available.
ISSN:2331-8422