Tensor-guided learning for image denoising using anisotropic PDEs
In this article, we introduce an advanced approach for enhanced image denoising using an improved space-variant anisotropic Partial Differential Equation (PDE) framework. Leveraging Weickert-type operators, this method relies on two critical parameters: λ and θ , defining local image geometry and sm...
Gespeichert in:
Veröffentlicht in: | Machine vision and applications 2024-05, Vol.35 (3), p.48, Article 48 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we introduce an advanced approach for enhanced image denoising using an improved space-variant anisotropic Partial Differential Equation (PDE) framework. Leveraging Weickert-type operators, this method relies on two critical parameters:
λ
and
θ
, defining local image geometry and smoothing strength. We propose an automatic parameter estimation technique rooted in PDE-constrained optimization, incorporating supplementary information from the original clean image. By combining these components, our approach achieves superior image denoising, pushing the boundaries of image enhancement methods. We employed a modified Alternating Direction Method of Multipliers (ADMM) procedure for numerical optimization, demonstrating its efficacy through thorough assessments and affirming its superior performance compared to alternative denoising methods. |
---|---|
ISSN: | 0932-8092 1432-1769 |
DOI: | 10.1007/s00138-024-01532-4 |