Identification of Linear Systems Using Binary Sensors with Random Thresholds
In this paper, the problem of identifying autoregressive-moving-average systems under random threshold binary-valued output measurements is considered. With the help of stochastic approximation algorithms with expanding truncations, the authors give the recursive estimates for the parameters of both...
Gespeichert in:
Veröffentlicht in: | Journal of systems science and complexity 2024-06, Vol.37 (3), p.907-923 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the problem of identifying autoregressive-moving-average systems under random threshold binary-valued output measurements is considered. With the help of stochastic approximation algorithms with expanding truncations, the authors give the recursive estimates for the parameters of both the linear system and the binary sensor. Under reasonable conditions, all constructed estimates are proved to be convergent to the true values with probability one, and the convergence rates are also established. A simulation example is provided to justify the theoretical results. |
---|---|
ISSN: | 1009-6124 1559-7067 |
DOI: | 10.1007/s11424-024-3109-0 |