Identification of Linear Systems Using Binary Sensors with Random Thresholds

In this paper, the problem of identifying autoregressive-moving-average systems under random threshold binary-valued output measurements is considered. With the help of stochastic approximation algorithms with expanding truncations, the authors give the recursive estimates for the parameters of both...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of systems science and complexity 2024-06, Vol.37 (3), p.907-923
Hauptverfasser: Huang, Zhiyong, Song, Qijiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the problem of identifying autoregressive-moving-average systems under random threshold binary-valued output measurements is considered. With the help of stochastic approximation algorithms with expanding truncations, the authors give the recursive estimates for the parameters of both the linear system and the binary sensor. Under reasonable conditions, all constructed estimates are proved to be convergent to the true values with probability one, and the convergence rates are also established. A simulation example is provided to justify the theoretical results.
ISSN:1009-6124
1559-7067
DOI:10.1007/s11424-024-3109-0