A Bilinear Sparse Domination for the Maximal Singular Integral Operators with Rough Kernels
Let Ω be homogeneous of degree zero, integrable on S d - 1 and have mean value zero, T Ω be the homogeneous singular integral operator with kernel Ω ( x ) | x | d and T Ω ∗ be the maximal operator associated to T Ω . In this paper, the authors prove that if Ω ∈ L ∞ ( S d - 1 ) , then for all r ∈ ( 1...
Gespeichert in:
Veröffentlicht in: | The Journal of geometric analysis 2024-06, Vol.34 (6), Article 162 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
Ω
be homogeneous of degree zero, integrable on
S
d
-
1
and have mean value zero,
T
Ω
be the homogeneous singular integral operator with kernel
Ω
(
x
)
|
x
|
d
and
T
Ω
∗
be the maximal operator associated to
T
Ω
. In this paper, the authors prove that if
Ω
∈
L
∞
(
S
d
-
1
)
, then for all
r
∈
(
1
,
∞
)
,
T
Ω
∗
enjoys a
(
L
Φ
,
L
r
)
bilinear sparse domination with
Φ
(
t
)
=
t
log
log
(
e
2
+
t
)
. Some applications of this bilinear sparse domination are also given. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-024-01607-8 |