A Bilinear Sparse Domination for the Maximal Singular Integral Operators with Rough Kernels

Let Ω be homogeneous of degree zero, integrable on S d - 1 and have mean value zero, T Ω be the homogeneous singular integral operator with kernel Ω ( x ) | x | d and T Ω ∗ be the maximal operator associated to T Ω . In this paper, the authors prove that if Ω ∈ L ∞ ( S d - 1 ) , then for all r ∈ ( 1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of geometric analysis 2024-06, Vol.34 (6), Article 162
Hauptverfasser: Tao, Xiangxing, Hu, Guoen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Ω be homogeneous of degree zero, integrable on S d - 1 and have mean value zero, T Ω be the homogeneous singular integral operator with kernel Ω ( x ) | x | d and T Ω ∗ be the maximal operator associated to T Ω . In this paper, the authors prove that if Ω ∈ L ∞ ( S d - 1 ) , then for all r ∈ ( 1 , ∞ ) , T Ω ∗ enjoys a ( L Φ , L r ) bilinear sparse domination with Φ ( t ) = t log log ( e 2 + t ) . Some applications of this bilinear sparse domination are also given.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-024-01607-8