Pluri-Potential Theory, Submersions and Calibrations

We present a systematic collection of results concerning interactions between convex, subharmonic and pluri-subharmonic functions on pairs of manifolds related by a Riemannian submersion. Our results are modelled on those known in the classical complex-analytic context and represent another step in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of geometric analysis 2024-06, Vol.34 (6), Article 157
1. Verfasser: Pacini, Tommaso
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a systematic collection of results concerning interactions between convex, subharmonic and pluri-subharmonic functions on pairs of manifolds related by a Riemannian submersion. Our results are modelled on those known in the classical complex-analytic context and represent another step in the recent Harvey–Lawson pluri-potential theory for calibrated manifolds. In particular, we study the case of Kähler and G 2 manifolds, emphasizing both parallels and differences. We show that previous results concerning Lagrangian fibrations can be viewed as an application of this framework.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-024-01602-z