Double-confined nanoheterostructure Sb/Sb2S3@Ti3C2Tx@C toward ultra-stable Li-/Na-ion batteries

Antimony-based materials with high capacities and moderate potentials are promising anodes for lithium-/sodium-ion batteries. However, their tremendous volume expansion and inferior conductivity lead to poor structural stability and sluggish reaction kinetics. Herein, a double-confined nanoheterostr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rare metals 2024-05, Vol.43 (5), p.2067-2079
Hauptverfasser: Wang, Dan, Ma, Qun, He, Huan, Wang, Zhi-Yuan, Zheng, Run-Guo, Sun, Hong-Yu, Liu, Yan-Guo, Liu, Chun-Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Antimony-based materials with high capacities and moderate potentials are promising anodes for lithium-/sodium-ion batteries. However, their tremendous volume expansion and inferior conductivity lead to poor structural stability and sluggish reaction kinetics. Herein, a double-confined nanoheterostructure Sb/Sb 2 S 3 @Ti 3 C 2 T x @C has been fabricated through a solvothermal method followed by low-temperature heat treatment. The dual protection of “MXene” and “carbon” can better accommodate the volume expansion of Sb/Sb 2 S 3 . The strong covalent bond (Ti–S, Ti–O–Sb, C–O–Sb) can firmly integrate Sb-based material with Ti 3 C 2 T x and carbon, which significantly improves the structure stability. In addition, the carbon layer can restrain the oxidation of MXenes, and the nano-Sb/Sb 2 S 3 can facilitate electron/ion transport and suppress the restacking of MXenes. The heterogeneous interface between Sb and Sb 2 S 3 can further promote interfacial charge transfer. The MXene-Sb/Sb 2 S 3 @C-1 with the optimal Sb content shows high specific capacities, comparable rate properties and ultra-stable cycling performances (250 mAh·g −1 after 2500 cycles at 1 A·g −1 for sodium-ion batteries). Ex situ X-ray diffractometer (XRD) test reveals the storage mechanism including the conversion and alloying process of MXene-Sb/Sb 2 S 3 @C-1. Cyclic voltammetry (CV) test results demonstrate that the pseudocapacitance behavior is dominant in MXene-Sb/Sb 2 S 3 @C-1, especially at large current. This design paves the way for exploring high-performance alloy-based/conversion-type anode for energy storage devices. Graphical abstract
ISSN:1001-0521
1867-7185
DOI:10.1007/s12598-023-02550-3