Grothendieck’s Vanishing and Non-vanishing Theorems in an Abstract Module Category
In this article, we prove Grothendieck’s Vanishing and Non-vanishing Theorems of local cohomology objects in the non-commutative algebraic geometry framework of Artin and Zhang. Let k be a field of characteristic zero and S k be a strongly locally noetherian k -linear Grothendieck category. For a co...
Gespeichert in:
Veröffentlicht in: | Applied categorical structures 2024-04, Vol.32 (2), Article 9 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we prove Grothendieck’s Vanishing and Non-vanishing Theorems of local cohomology objects in the non-commutative algebraic geometry framework of Artin and Zhang. Let
k
be a field of characteristic zero and
S
k
be a strongly locally noetherian
k
-linear Grothendieck category. For a commutative noetherian
k
-algebra
R
, let
S
R
denote the category of
R
-objects in
S
k
obtained through a non-commutative base change by
R
of the abelian category
S
k
. First, we establish Grothendieck’s Vanishing Theorem for any object
M
in
S
R
. Further, if
R
is local and
S
k
is Hom-finite, we prove Non-vanishing Theorem for any finitely generated flat object
M
in
S
R
. |
---|---|
ISSN: | 0927-2852 1572-9095 |
DOI: | 10.1007/s10485-024-09767-y |