Investigating Routing Protocol Attacks on Low Power and Lossy IoT Networks
Internet-of-things (IoT) networks are distinguished by nodes with limited computational power and storage capacity, making Low Power and Lossy Networks (LLNs) protocols essential for effective communication in resource-constrained environments. One such protocol is the Routing Protocol for Low-Power...
Gespeichert in:
Veröffentlicht in: | SN computer science 2024-04, Vol.5 (4), p.393, Article 393 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Internet-of-things (IoT) networks are distinguished by nodes with limited computational power and storage capacity, making Low Power and Lossy Networks (LLNs) protocols essential for effective communication in resource-constrained environments. One such protocol is the Routing Protocol for Low-Power and Lossy networks (RPL), which establishes and manages routes in RPL-based networks. RPL contributes to optimized routing and reduced network overhead in LLNs. However, the RPL-based protocol is susceptible to various internal and external vulnerabilities that require thorough exploration and mitigation. Experimental results illustrate the impact of several RPL attacks, including the DODAG Information Solicitation (DIS) attack, version number attack, decreased rank attack, and worst parent selection (WPS) attack. For simulation purposes, we employed the Contiki Cooja network simulator. Further, we conduct a comparative analysis of these RPL-based attacks, revealing that the WPS attack has a significant impact on the network performance compared to other attacks mentioned in the paper. |
---|---|
ISSN: | 2661-8907 2662-995X 2661-8907 |
DOI: | 10.1007/s42979-024-02747-y |