Self-reducing molecular ink for printed electronics and lithium-ion battery cathodes as conductive binder

Particle-free metal-organic-decomposition inks, especially amine-coordinated copper formate compounds, can be employed as highly conductive binder precursors to replace the commonly used polymer adhesives. Herein, we used the copper formate complex (Cuf-C) as the conductive binder precursor instead...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2024-04, Vol.12 (14), p.5114-5121
Hauptverfasser: Qi, Wenning, Han, Ruolin, Quan, Hui, Guo, Ruilu, Gao, Dali, Zhou, Zheng, Chen, Guang-Xin, Li, Qifang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Particle-free metal-organic-decomposition inks, especially amine-coordinated copper formate compounds, can be employed as highly conductive binder precursors to replace the commonly used polymer adhesives. Herein, we used the copper formate complex (Cuf-C) as the conductive binder precursor instead of organic binders and dispersants to prepare a series of composite inks. The lowest voltage solid block resistance of the graphene composite conductive ink was 7.34 Ω per sq per mil. In addition, we applied the pyrolysis products of Cuf-C to the cathode of lithium-ion batteries as conductive binder. Compared with the traditional poly(vinylidene fluoride) binder, the battery with the Cuf-C binder displayed lower charge transfer resistance and interface impedance at the cathode/electrolyte interface, as well as lower polarization and better electrochemical kinetics. We also observed the positive effect of the Cuf-C binder on the cathode in finite element simulation. Cuf-C is used as a replacement to organic binders in the preparation of conductive inks. Cuf-C is applied to the cathode of lithium-ion batteries as conductive binder.
ISSN:2050-7526
2050-7534
DOI:10.1039/d3tc03636g