Bifurcation of Multiple Periodic Solutions for a Class of Nonlinear Dynamical Systems in (m+4)-Dimension

In this paper, we introduce a curvilinear coordinate transformation to study the bifurcation of periodic solutions from a 2-degree-of-freedom Hamiltonian system, when it is perturbed in R m + 4 , where m represents any positive integer. The extended Melnikov function is obtained by constructing a Po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nonlinear mathematical physics 2024-04, Vol.31 (1), p.21, Article 21
Hauptverfasser: Quan, Tingting, Li, Jing, Sun, Min, Chen, Yongqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 21
container_title Journal of nonlinear mathematical physics
container_volume 31
creator Quan, Tingting
Li, Jing
Sun, Min
Chen, Yongqiang
description In this paper, we introduce a curvilinear coordinate transformation to study the bifurcation of periodic solutions from a 2-degree-of-freedom Hamiltonian system, when it is perturbed in R m + 4 , where m represents any positive integer. The extended Melnikov function is obtained by constructing a Poincaré map on the curvilinear coordinate frame of the trajectory of the unperturbed system. Then the criteria for bifurcation of periodic solutions of these Hamiltonian systems under isochronous and non-isochronous conditions are obtained. As for its application, we study the number of periodic solutions of a composite piezoelectric cantilever rectangular plate system whose averaged equation can be transformed into a ( 2 + 4 ) -dimensional dynamical system. Furthermore, under the two resonance conditions of 1:1 and 1:2, we obtain the periodic solution numbers of this system with the variation of parametric excitation coefficient p 1 .
doi_str_mv 10.1007/s44198-024-00181-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3031478190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3031478190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-6a436ecb85146b953c125eb2d32be5343de5806e9eaae14474ecd3f1225297a13</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuAG0WqubbpUme8wXiB0XVI21PN0CZj0i7m7e1YQVeuzoHz_f-BD6FjSi4oIdllFILmKiFMJIRQRRO5gyY0y9KEKMl2_-z76CDGFSE8S5WaoI9rW_ehNJ31DvsaP_ZNZ9cN4BcI1le2xEvf9NtrxLUP2OBZY2Lcok_eNdaBCXi-caa1pWnwchM7aCO2Dp-25-IsmdsWXBzih2ivNk2Eo585RW-3N6-z-2TxfPcwu1okJaeiS1IjeAploSQVaZFLXlImoWAVZwVILngFUpEUcjAGqBCZgLLiNWVMsjwzlE_Rydi7Dv6zh9jple-DG15qToYXmaI5GSg2UmXwMQao9TrY1oSNpkRvjerRqB6M6m-jWg4hPobiALt3CL_V_6S-ANhZeHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031478190</pqid></control><display><type>article</type><title>Bifurcation of Multiple Periodic Solutions for a Class of Nonlinear Dynamical Systems in (m+4)-Dimension</title><source>Springer Nature - Complete Springer Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><creator>Quan, Tingting ; Li, Jing ; Sun, Min ; Chen, Yongqiang</creator><creatorcontrib>Quan, Tingting ; Li, Jing ; Sun, Min ; Chen, Yongqiang</creatorcontrib><description>In this paper, we introduce a curvilinear coordinate transformation to study the bifurcation of periodic solutions from a 2-degree-of-freedom Hamiltonian system, when it is perturbed in R m + 4 , where m represents any positive integer. The extended Melnikov function is obtained by constructing a Poincaré map on the curvilinear coordinate frame of the trajectory of the unperturbed system. Then the criteria for bifurcation of periodic solutions of these Hamiltonian systems under isochronous and non-isochronous conditions are obtained. As for its application, we study the number of periodic solutions of a composite piezoelectric cantilever rectangular plate system whose averaged equation can be transformed into a ( 2 + 4 ) -dimensional dynamical system. Furthermore, under the two resonance conditions of 1:1 and 1:2, we obtain the periodic solution numbers of this system with the variation of parametric excitation coefficient p 1 .</description><identifier>ISSN: 1776-0852</identifier><identifier>ISSN: 1402-9251</identifier><identifier>EISSN: 1776-0852</identifier><identifier>DOI: 10.1007/s44198-024-00181-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Bifurcations ; Cantilever plates ; Coefficient of variation ; Coordinate transformations ; Dynamical systems ; Fabric analysis ; Hamiltonian functions ; Mathematical Physics ; Mathematics ; Mathematics and Statistics ; Neighborhoods ; Nonlinear systems ; Orbits ; Ordinary differential equations ; Piezoelectricity ; Poincare maps ; Rectangular plates ; Research Article ; Spherical coordinates</subject><ispartof>Journal of nonlinear mathematical physics, 2024-04, Vol.31 (1), p.21, Article 21</ispartof><rights>The Author(s) 2024</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-6a436ecb85146b953c125eb2d32be5343de5806e9eaae14474ecd3f1225297a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s44198-024-00181-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s44198-024-00181-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41096,41464,42165,42533,51294,51551</link.rule.ids></links><search><creatorcontrib>Quan, Tingting</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Sun, Min</creatorcontrib><creatorcontrib>Chen, Yongqiang</creatorcontrib><title>Bifurcation of Multiple Periodic Solutions for a Class of Nonlinear Dynamical Systems in (m+4)-Dimension</title><title>Journal of nonlinear mathematical physics</title><addtitle>J Nonlinear Math Phys</addtitle><description>In this paper, we introduce a curvilinear coordinate transformation to study the bifurcation of periodic solutions from a 2-degree-of-freedom Hamiltonian system, when it is perturbed in R m + 4 , where m represents any positive integer. The extended Melnikov function is obtained by constructing a Poincaré map on the curvilinear coordinate frame of the trajectory of the unperturbed system. Then the criteria for bifurcation of periodic solutions of these Hamiltonian systems under isochronous and non-isochronous conditions are obtained. As for its application, we study the number of periodic solutions of a composite piezoelectric cantilever rectangular plate system whose averaged equation can be transformed into a ( 2 + 4 ) -dimensional dynamical system. Furthermore, under the two resonance conditions of 1:1 and 1:2, we obtain the periodic solution numbers of this system with the variation of parametric excitation coefficient p 1 .</description><subject>Bifurcations</subject><subject>Cantilever plates</subject><subject>Coefficient of variation</subject><subject>Coordinate transformations</subject><subject>Dynamical systems</subject><subject>Fabric analysis</subject><subject>Hamiltonian functions</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Neighborhoods</subject><subject>Nonlinear systems</subject><subject>Orbits</subject><subject>Ordinary differential equations</subject><subject>Piezoelectricity</subject><subject>Poincare maps</subject><subject>Rectangular plates</subject><subject>Research Article</subject><subject>Spherical coordinates</subject><issn>1776-0852</issn><issn>1402-9251</issn><issn>1776-0852</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kMtKxDAUhoMoOI6-gKuAG0WqubbpUme8wXiB0XVI21PN0CZj0i7m7e1YQVeuzoHz_f-BD6FjSi4oIdllFILmKiFMJIRQRRO5gyY0y9KEKMl2_-z76CDGFSE8S5WaoI9rW_ehNJ31DvsaP_ZNZ9cN4BcI1le2xEvf9NtrxLUP2OBZY2Lcok_eNdaBCXi-caa1pWnwchM7aCO2Dp-25-IsmdsWXBzih2ivNk2Eo585RW-3N6-z-2TxfPcwu1okJaeiS1IjeAploSQVaZFLXlImoWAVZwVILngFUpEUcjAGqBCZgLLiNWVMsjwzlE_Rydi7Dv6zh9jple-DG15qToYXmaI5GSg2UmXwMQao9TrY1oSNpkRvjerRqB6M6m-jWg4hPobiALt3CL_V_6S-ANhZeHw</recordid><startdate>20240403</startdate><enddate>20240403</enddate><creator>Quan, Tingting</creator><creator>Li, Jing</creator><creator>Sun, Min</creator><creator>Chen, Yongqiang</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20240403</creationdate><title>Bifurcation of Multiple Periodic Solutions for a Class of Nonlinear Dynamical Systems in (m+4)-Dimension</title><author>Quan, Tingting ; Li, Jing ; Sun, Min ; Chen, Yongqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-6a436ecb85146b953c125eb2d32be5343de5806e9eaae14474ecd3f1225297a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bifurcations</topic><topic>Cantilever plates</topic><topic>Coefficient of variation</topic><topic>Coordinate transformations</topic><topic>Dynamical systems</topic><topic>Fabric analysis</topic><topic>Hamiltonian functions</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Neighborhoods</topic><topic>Nonlinear systems</topic><topic>Orbits</topic><topic>Ordinary differential equations</topic><topic>Piezoelectricity</topic><topic>Poincare maps</topic><topic>Rectangular plates</topic><topic>Research Article</topic><topic>Spherical coordinates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quan, Tingting</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Sun, Min</creatorcontrib><creatorcontrib>Chen, Yongqiang</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of nonlinear mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quan, Tingting</au><au>Li, Jing</au><au>Sun, Min</au><au>Chen, Yongqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifurcation of Multiple Periodic Solutions for a Class of Nonlinear Dynamical Systems in (m+4)-Dimension</atitle><jtitle>Journal of nonlinear mathematical physics</jtitle><stitle>J Nonlinear Math Phys</stitle><date>2024-04-03</date><risdate>2024</risdate><volume>31</volume><issue>1</issue><spage>21</spage><pages>21-</pages><artnum>21</artnum><issn>1776-0852</issn><issn>1402-9251</issn><eissn>1776-0852</eissn><abstract>In this paper, we introduce a curvilinear coordinate transformation to study the bifurcation of periodic solutions from a 2-degree-of-freedom Hamiltonian system, when it is perturbed in R m + 4 , where m represents any positive integer. The extended Melnikov function is obtained by constructing a Poincaré map on the curvilinear coordinate frame of the trajectory of the unperturbed system. Then the criteria for bifurcation of periodic solutions of these Hamiltonian systems under isochronous and non-isochronous conditions are obtained. As for its application, we study the number of periodic solutions of a composite piezoelectric cantilever rectangular plate system whose averaged equation can be transformed into a ( 2 + 4 ) -dimensional dynamical system. Furthermore, under the two resonance conditions of 1:1 and 1:2, we obtain the periodic solution numbers of this system with the variation of parametric excitation coefficient p 1 .</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s44198-024-00181-5</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1776-0852
ispartof Journal of nonlinear mathematical physics, 2024-04, Vol.31 (1), p.21, Article 21
issn 1776-0852
1402-9251
1776-0852
language eng
recordid cdi_proquest_journals_3031478190
source Springer Nature - Complete Springer Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals
subjects Bifurcations
Cantilever plates
Coefficient of variation
Coordinate transformations
Dynamical systems
Fabric analysis
Hamiltonian functions
Mathematical Physics
Mathematics
Mathematics and Statistics
Neighborhoods
Nonlinear systems
Orbits
Ordinary differential equations
Piezoelectricity
Poincare maps
Rectangular plates
Research Article
Spherical coordinates
title Bifurcation of Multiple Periodic Solutions for a Class of Nonlinear Dynamical Systems in (m+4)-Dimension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A30%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifurcation%20of%20Multiple%20Periodic%20Solutions%20for%20a%20Class%20of%20Nonlinear%20Dynamical%20Systems%20in%20(m+4)-Dimension&rft.jtitle=Journal%20of%20nonlinear%20mathematical%20physics&rft.au=Quan,%20Tingting&rft.date=2024-04-03&rft.volume=31&rft.issue=1&rft.spage=21&rft.pages=21-&rft.artnum=21&rft.issn=1776-0852&rft.eissn=1776-0852&rft_id=info:doi/10.1007/s44198-024-00181-5&rft_dat=%3Cproquest_cross%3E3031478190%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031478190&rft_id=info:pmid/&rfr_iscdi=true