Bifurcation of Multiple Periodic Solutions for a Class of Nonlinear Dynamical Systems in (m+4)-Dimension
In this paper, we introduce a curvilinear coordinate transformation to study the bifurcation of periodic solutions from a 2-degree-of-freedom Hamiltonian system, when it is perturbed in R m + 4 , where m represents any positive integer. The extended Melnikov function is obtained by constructing a Po...
Gespeichert in:
Veröffentlicht in: | Journal of nonlinear mathematical physics 2024-04, Vol.31 (1), p.21, Article 21 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we introduce a curvilinear coordinate transformation to study the bifurcation of periodic solutions from a 2-degree-of-freedom Hamiltonian system, when it is perturbed in
R
m
+
4
, where
m
represents any positive integer. The extended Melnikov function is obtained by constructing a Poincaré map on the curvilinear coordinate frame of the trajectory of the unperturbed system. Then the criteria for bifurcation of periodic solutions of these Hamiltonian systems under isochronous and non-isochronous conditions are obtained. As for its application, we study the number of periodic solutions of a composite piezoelectric cantilever rectangular plate system whose averaged equation can be transformed into a
(
2
+
4
)
-dimensional dynamical system. Furthermore, under the two resonance conditions of 1:1 and 1:2, we obtain the periodic solution numbers of this system with the variation of parametric excitation coefficient
p
1
. |
---|---|
ISSN: | 1776-0852 1402-9251 1776-0852 |
DOI: | 10.1007/s44198-024-00181-5 |