Analytic conjugation between planar differential systems and potential systems
In this article it is proved that an analytical planar vector field with a non-degenerate center at \((0,0)\) is analytically conjugate, in a neighborhood of \((0,0)\), to a Hamiltonian vector field of the form \(y\frac{\partial}{\partial x}-V'(x)\frac{\partial}{\partial y}\), where \(V\) is an...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article it is proved that an analytical planar vector field with a non-degenerate center at \((0,0)\) is analytically conjugate, in a neighborhood of \((0,0)\), to a Hamiltonian vector field of the form \(y\frac{\partial}{\partial x}-V'(x)\frac{\partial}{\partial y}\), where \(V\) is an analytic function defined in a neighborhood of the origin such that \(V(0)=V'(0)=0\) and \(V''(0)>0.\) |
---|---|
ISSN: | 2331-8422 |