Analytic conjugation between planar differential systems and potential systems

In this article it is proved that an analytical planar vector field with a non-degenerate center at \((0,0)\) is analytically conjugate, in a neighborhood of \((0,0)\), to a Hamiltonian vector field of the form \(y\frac{\partial}{\partial x}-V'(x)\frac{\partial}{\partial y}\), where \(V\) is an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
1. Verfasser: Nascimento, F J S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article it is proved that an analytical planar vector field with a non-degenerate center at \((0,0)\) is analytically conjugate, in a neighborhood of \((0,0)\), to a Hamiltonian vector field of the form \(y\frac{\partial}{\partial x}-V'(x)\frac{\partial}{\partial y}\), where \(V\) is an analytic function defined in a neighborhood of the origin such that \(V(0)=V'(0)=0\) and \(V''(0)>0.\)
ISSN:2331-8422