An SVD-like Decomposition of Bounded-Input Bounded-Output Functions

The Singular Value Decomposition (SVD) of linear functions facilitates the calculation of their 2-induced norm and row and null spaces, hallmarks of linear control theory. In this work, we present a function representation that, similar to SVD, provides an upper bound on the 2-induced norm of bounde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Brown, Brian Charles, King, Michael, Warnick, Sean, Yeung, Enoch, Grimsman, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Singular Value Decomposition (SVD) of linear functions facilitates the calculation of their 2-induced norm and row and null spaces, hallmarks of linear control theory. In this work, we present a function representation that, similar to SVD, provides an upper bound on the 2-induced norm of bounded-input bounded-output functions, as well as facilitates the computation of generalizations of the notions of row and null spaces. Borrowing from the notion of "lifting" in Koopman operator theory, we construct a finite-dimensional lifting of inputs that relaxes the unitary property of the right-most matrix in traditional SVD, \(V^*\), to be an injective, norm-preserving mapping to a slightly higher-dimensional space.
ISSN:2331-8422