On adjoint invariant classes of shift operators

In the following text we compute the adjoint of weighted generalized shift operators over Hilbert spaces. We show for a conjugate invariant subset \(A\) of \(\mathbb C\), the additive semigroup generated by \(A\cup\{0\}-\)weighted generalized shifts over Hilbert space \(\mathcal H\) is adjoint invar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: F Ayatollah Zadeh Shirazi, Hakimi, E, Hosseini, A, Rezavand, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the following text we compute the adjoint of weighted generalized shift operators over Hilbert spaces. We show for a conjugate invariant subset \(A\) of \(\mathbb C\), the additive semigroup generated by \(A\cup\{0\}-\)weighted generalized shifts over Hilbert space \(\mathcal H\) is adjoint invariant if and only if \(\mathcal H\) is a finite dimensional Hilbert space or \(0\) is not a limit point of \(A\).
ISSN:2331-8422