On adjoint invariant classes of shift operators
In the following text we compute the adjoint of weighted generalized shift operators over Hilbert spaces. We show for a conjugate invariant subset \(A\) of \(\mathbb C\), the additive semigroup generated by \(A\cup\{0\}-\)weighted generalized shifts over Hilbert space \(\mathcal H\) is adjoint invar...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the following text we compute the adjoint of weighted generalized shift operators over Hilbert spaces. We show for a conjugate invariant subset \(A\) of \(\mathbb C\), the additive semigroup generated by \(A\cup\{0\}-\)weighted generalized shifts over Hilbert space \(\mathcal H\) is adjoint invariant if and only if \(\mathcal H\) is a finite dimensional Hilbert space or \(0\) is not a limit point of \(A\). |
---|---|
ISSN: | 2331-8422 |