Quantum Heat Transformers

We propose a quantum heat transformer (QHT) designed to function analogous to classical voltage transformers. Unlike the classical counterparts, which regulate voltage, a QHT regulates temperature differences between its terminals. We initially design the device for a three-qubit system, representin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Maity, Arghya, Chaki, Paranjoy, Ghoshal, Ahana, Sen, Ujjwal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a quantum heat transformer (QHT) designed to function analogous to classical voltage transformers. Unlike the classical counterparts, which regulate voltage, a QHT regulates temperature differences between its terminals. We initially design the device for a three-qubit system, representing the smallest possible self-contained heat transformer model. Subsequently we extend to four-qubit systems, with a specific emphasis on exploring the step-down mode for identifying the primary figure of merit. We showcase the versatility and adaptability of the models by demonstrating the availability of various self-contained setups. A key performance indicator, the capacity of thermal control, is defined to measure the capability of QHTs. An important effect in this study is the proof of existence of a necessarily transient step-down quantum heat transformer, that has a dual-mode characteristic, wherein the desired step-down mode can be realized within the transient regime of an originally designed step-up mode of the QHT. We also investigate how to control this transient domain up to which the necessarily transient mode can be achieved, by regulating the initial temperature of the qubits in the four-qubit settings. Therefore, this quantum heat transformer model not only acts as an analog to the classical voltage transformer, but also enjoys advanced characteristics, enabling it to function in both step-up and step-down modes within the same setup, unattainable for voltage transformers.
ISSN:2331-8422