Gradient bandgap enables >13% efficiency sulfide Kesterite solar cells with open-circuit voltage over 800 mV

Sulfide Kesterite Cu2ZnSnS4 (CZTS), a nontoxic and low-cost photovoltaic material, has always being facing severe charge recombination and poor carrier transport, resulting in the cell efficiency record stagnating around 11% for years. Gradient bandgap is a promising approach to relieve these issues...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Kang, Yin, Wang, Jinlin, Lou, Licheng, Xu, Xiao, Bowen, Zhang, Jiao, Menghan, Shi, Jiangjian, Li, Dongmei, Wu, Huijue, Luo, Yanhong, Meng, Qingbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kang, Yin
Wang, Jinlin
Lou, Licheng
Xu, Xiao
Bowen, Zhang
Jiao, Menghan
Shi, Jiangjian
Li, Dongmei
Wu, Huijue
Luo, Yanhong
Meng, Qingbo
description Sulfide Kesterite Cu2ZnSnS4 (CZTS), a nontoxic and low-cost photovoltaic material, has always being facing severe charge recombination and poor carrier transport, resulting in the cell efficiency record stagnating around 11% for years. Gradient bandgap is a promising approach to relieve these issues, however, has not been effectively realized in Kesterite solar cells due to the challenges in controlling the gradient distribution of alloying elements at high temperatures. Herein, targeting at the Cd alloyed CZTS, we propose a pre-crystallization strategy to reduce the intense vertical mass transport and Cd rapid diffusion in the film growth process, thereby realizing front Cd-gradient CZTS absorber. The Cd-gradient CZTS absorber, exhibiting downward bending conduction band structure, has significantly enhanced the minority carrier transport and additionally improved band alignment and interface property of CZTS/CdS heterojunction. Ultimately, we have achieved a champion total-area efficiency of 13.5% (active-area efficiency: 14.1%) in the cell and in particular a high open-circuit voltage of >800 mV. We have also achieved a certified total-area cell efficiency of 13.16%, realizing a substantial step forward for the pure sulfide Kesterite solar cell.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3030950262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3030950262</sourcerecordid><originalsourceid>FETCH-proquest_journals_30309502623</originalsourceid><addsrcrecordid>eNqNjr0KwjAURoMgWLTvcEEcC2litS4u4g-4imtJ09uaEpOapBXf3g4-gNMZzuHjm5CIcZ4m-ZqxGYm9bymlbLNlWcYjos9OVApNgFKYqhEdoBGlRg_7lK8A61rJUcsP-F7XqkK4og_oVEDwVgsHErX28FbhAbZDk0jlZK8CDFYH0SDYAR3klMLzviDTWmiP8Y9zsjwdb4dL0jn76sfdorW9M6MqOOV0l40_Gf-v-gLwRkgF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3030950262</pqid></control><display><type>article</type><title>Gradient bandgap enables &gt;13% efficiency sulfide Kesterite solar cells with open-circuit voltage over 800 mV</title><source>Open Access: Freely Accessible Journals by multiple vendors</source><creator>Kang, Yin ; Wang, Jinlin ; Lou, Licheng ; Xu, Xiao ; Bowen, Zhang ; Jiao, Menghan ; Shi, Jiangjian ; Li, Dongmei ; Wu, Huijue ; Luo, Yanhong ; Meng, Qingbo</creator><creatorcontrib>Kang, Yin ; Wang, Jinlin ; Lou, Licheng ; Xu, Xiao ; Bowen, Zhang ; Jiao, Menghan ; Shi, Jiangjian ; Li, Dongmei ; Wu, Huijue ; Luo, Yanhong ; Meng, Qingbo</creatorcontrib><description>Sulfide Kesterite Cu2ZnSnS4 (CZTS), a nontoxic and low-cost photovoltaic material, has always being facing severe charge recombination and poor carrier transport, resulting in the cell efficiency record stagnating around 11% for years. Gradient bandgap is a promising approach to relieve these issues, however, has not been effectively realized in Kesterite solar cells due to the challenges in controlling the gradient distribution of alloying elements at high temperatures. Herein, targeting at the Cd alloyed CZTS, we propose a pre-crystallization strategy to reduce the intense vertical mass transport and Cd rapid diffusion in the film growth process, thereby realizing front Cd-gradient CZTS absorber. The Cd-gradient CZTS absorber, exhibiting downward bending conduction band structure, has significantly enhanced the minority carrier transport and additionally improved band alignment and interface property of CZTS/CdS heterojunction. Ultimately, we have achieved a champion total-area efficiency of 13.5% (active-area efficiency: 14.1%) in the cell and in particular a high open-circuit voltage of &gt;800 mV. We have also achieved a certified total-area cell efficiency of 13.16%, realizing a substantial step forward for the pure sulfide Kesterite solar cell.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Absorbers ; Alloying elements ; Carrier recombination ; Carrier transport ; Conduction bands ; Crystallization ; Current carriers ; Efficiency ; Energy gap ; Film growth ; Heterojunctions ; High temperature ; Interfacial properties ; Mass transport ; Minority carriers ; Open circuit voltage ; Photovoltaic cells ; Solar cells</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Kang, Yin</creatorcontrib><creatorcontrib>Wang, Jinlin</creatorcontrib><creatorcontrib>Lou, Licheng</creatorcontrib><creatorcontrib>Xu, Xiao</creatorcontrib><creatorcontrib>Bowen, Zhang</creatorcontrib><creatorcontrib>Jiao, Menghan</creatorcontrib><creatorcontrib>Shi, Jiangjian</creatorcontrib><creatorcontrib>Li, Dongmei</creatorcontrib><creatorcontrib>Wu, Huijue</creatorcontrib><creatorcontrib>Luo, Yanhong</creatorcontrib><creatorcontrib>Meng, Qingbo</creatorcontrib><title>Gradient bandgap enables &gt;13% efficiency sulfide Kesterite solar cells with open-circuit voltage over 800 mV</title><title>arXiv.org</title><description>Sulfide Kesterite Cu2ZnSnS4 (CZTS), a nontoxic and low-cost photovoltaic material, has always being facing severe charge recombination and poor carrier transport, resulting in the cell efficiency record stagnating around 11% for years. Gradient bandgap is a promising approach to relieve these issues, however, has not been effectively realized in Kesterite solar cells due to the challenges in controlling the gradient distribution of alloying elements at high temperatures. Herein, targeting at the Cd alloyed CZTS, we propose a pre-crystallization strategy to reduce the intense vertical mass transport and Cd rapid diffusion in the film growth process, thereby realizing front Cd-gradient CZTS absorber. The Cd-gradient CZTS absorber, exhibiting downward bending conduction band structure, has significantly enhanced the minority carrier transport and additionally improved band alignment and interface property of CZTS/CdS heterojunction. Ultimately, we have achieved a champion total-area efficiency of 13.5% (active-area efficiency: 14.1%) in the cell and in particular a high open-circuit voltage of &gt;800 mV. We have also achieved a certified total-area cell efficiency of 13.16%, realizing a substantial step forward for the pure sulfide Kesterite solar cell.</description><subject>Absorbers</subject><subject>Alloying elements</subject><subject>Carrier recombination</subject><subject>Carrier transport</subject><subject>Conduction bands</subject><subject>Crystallization</subject><subject>Current carriers</subject><subject>Efficiency</subject><subject>Energy gap</subject><subject>Film growth</subject><subject>Heterojunctions</subject><subject>High temperature</subject><subject>Interfacial properties</subject><subject>Mass transport</subject><subject>Minority carriers</subject><subject>Open circuit voltage</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjr0KwjAURoMgWLTvcEEcC2litS4u4g-4imtJ09uaEpOapBXf3g4-gNMZzuHjm5CIcZ4m-ZqxGYm9bymlbLNlWcYjos9OVApNgFKYqhEdoBGlRg_7lK8A61rJUcsP-F7XqkK4og_oVEDwVgsHErX28FbhAbZDk0jlZK8CDFYH0SDYAR3klMLzviDTWmiP8Y9zsjwdb4dL0jn76sfdorW9M6MqOOV0l40_Gf-v-gLwRkgF</recordid><startdate>20240330</startdate><enddate>20240330</enddate><creator>Kang, Yin</creator><creator>Wang, Jinlin</creator><creator>Lou, Licheng</creator><creator>Xu, Xiao</creator><creator>Bowen, Zhang</creator><creator>Jiao, Menghan</creator><creator>Shi, Jiangjian</creator><creator>Li, Dongmei</creator><creator>Wu, Huijue</creator><creator>Luo, Yanhong</creator><creator>Meng, Qingbo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240330</creationdate><title>Gradient bandgap enables &gt;13% efficiency sulfide Kesterite solar cells with open-circuit voltage over 800 mV</title><author>Kang, Yin ; Wang, Jinlin ; Lou, Licheng ; Xu, Xiao ; Bowen, Zhang ; Jiao, Menghan ; Shi, Jiangjian ; Li, Dongmei ; Wu, Huijue ; Luo, Yanhong ; Meng, Qingbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30309502623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorbers</topic><topic>Alloying elements</topic><topic>Carrier recombination</topic><topic>Carrier transport</topic><topic>Conduction bands</topic><topic>Crystallization</topic><topic>Current carriers</topic><topic>Efficiency</topic><topic>Energy gap</topic><topic>Film growth</topic><topic>Heterojunctions</topic><topic>High temperature</topic><topic>Interfacial properties</topic><topic>Mass transport</topic><topic>Minority carriers</topic><topic>Open circuit voltage</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><toplevel>online_resources</toplevel><creatorcontrib>Kang, Yin</creatorcontrib><creatorcontrib>Wang, Jinlin</creatorcontrib><creatorcontrib>Lou, Licheng</creatorcontrib><creatorcontrib>Xu, Xiao</creatorcontrib><creatorcontrib>Bowen, Zhang</creatorcontrib><creatorcontrib>Jiao, Menghan</creatorcontrib><creatorcontrib>Shi, Jiangjian</creatorcontrib><creatorcontrib>Li, Dongmei</creatorcontrib><creatorcontrib>Wu, Huijue</creatorcontrib><creatorcontrib>Luo, Yanhong</creatorcontrib><creatorcontrib>Meng, Qingbo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Yin</au><au>Wang, Jinlin</au><au>Lou, Licheng</au><au>Xu, Xiao</au><au>Bowen, Zhang</au><au>Jiao, Menghan</au><au>Shi, Jiangjian</au><au>Li, Dongmei</au><au>Wu, Huijue</au><au>Luo, Yanhong</au><au>Meng, Qingbo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Gradient bandgap enables &gt;13% efficiency sulfide Kesterite solar cells with open-circuit voltage over 800 mV</atitle><jtitle>arXiv.org</jtitle><date>2024-03-30</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Sulfide Kesterite Cu2ZnSnS4 (CZTS), a nontoxic and low-cost photovoltaic material, has always being facing severe charge recombination and poor carrier transport, resulting in the cell efficiency record stagnating around 11% for years. Gradient bandgap is a promising approach to relieve these issues, however, has not been effectively realized in Kesterite solar cells due to the challenges in controlling the gradient distribution of alloying elements at high temperatures. Herein, targeting at the Cd alloyed CZTS, we propose a pre-crystallization strategy to reduce the intense vertical mass transport and Cd rapid diffusion in the film growth process, thereby realizing front Cd-gradient CZTS absorber. The Cd-gradient CZTS absorber, exhibiting downward bending conduction band structure, has significantly enhanced the minority carrier transport and additionally improved band alignment and interface property of CZTS/CdS heterojunction. Ultimately, we have achieved a champion total-area efficiency of 13.5% (active-area efficiency: 14.1%) in the cell and in particular a high open-circuit voltage of &gt;800 mV. We have also achieved a certified total-area cell efficiency of 13.16%, realizing a substantial step forward for the pure sulfide Kesterite solar cell.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_3030950262
source Open Access: Freely Accessible Journals by multiple vendors
subjects Absorbers
Alloying elements
Carrier recombination
Carrier transport
Conduction bands
Crystallization
Current carriers
Efficiency
Energy gap
Film growth
Heterojunctions
High temperature
Interfacial properties
Mass transport
Minority carriers
Open circuit voltage
Photovoltaic cells
Solar cells
title Gradient bandgap enables >13% efficiency sulfide Kesterite solar cells with open-circuit voltage over 800 mV
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T09%3A46%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Gradient%20bandgap%20enables%20%3E13%25%20efficiency%20sulfide%20Kesterite%20solar%20cells%20with%20open-circuit%20voltage%20over%20800%20mV&rft.jtitle=arXiv.org&rft.au=Kang,%20Yin&rft.date=2024-03-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3030950262%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3030950262&rft_id=info:pmid/&rfr_iscdi=true