Gradient bandgap enables >13% efficiency sulfide Kesterite solar cells with open-circuit voltage over 800 mV

Sulfide Kesterite Cu2ZnSnS4 (CZTS), a nontoxic and low-cost photovoltaic material, has always being facing severe charge recombination and poor carrier transport, resulting in the cell efficiency record stagnating around 11% for years. Gradient bandgap is a promising approach to relieve these issues...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Kang, Yin, Wang, Jinlin, Lou, Licheng, Xu, Xiao, Bowen, Zhang, Jiao, Menghan, Shi, Jiangjian, Li, Dongmei, Wu, Huijue, Luo, Yanhong, Meng, Qingbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sulfide Kesterite Cu2ZnSnS4 (CZTS), a nontoxic and low-cost photovoltaic material, has always being facing severe charge recombination and poor carrier transport, resulting in the cell efficiency record stagnating around 11% for years. Gradient bandgap is a promising approach to relieve these issues, however, has not been effectively realized in Kesterite solar cells due to the challenges in controlling the gradient distribution of alloying elements at high temperatures. Herein, targeting at the Cd alloyed CZTS, we propose a pre-crystallization strategy to reduce the intense vertical mass transport and Cd rapid diffusion in the film growth process, thereby realizing front Cd-gradient CZTS absorber. The Cd-gradient CZTS absorber, exhibiting downward bending conduction band structure, has significantly enhanced the minority carrier transport and additionally improved band alignment and interface property of CZTS/CdS heterojunction. Ultimately, we have achieved a champion total-area efficiency of 13.5% (active-area efficiency: 14.1%) in the cell and in particular a high open-circuit voltage of >800 mV. We have also achieved a certified total-area cell efficiency of 13.16%, realizing a substantial step forward for the pure sulfide Kesterite solar cell.
ISSN:2331-8422