Computational Analysis of the Dissipative Casson Fluid Flow Originating from a Slippery Sheet in Porous Media
This research paper examines the characteristics of a two-dimensional steady flow involving an incompressible viscous Casson fluid past an elastic surface that is both permeable and convectively heated, with the added feature of slip velocity. In contrast to Darcy’s Law, the current model incorporat...
Gespeichert in:
Veröffentlicht in: | Journal of nonlinear mathematical physics 2024-04, Vol.31 (1), p.19, Article 19 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This research paper examines the characteristics of a two-dimensional steady flow involving an incompressible viscous Casson fluid past an elastic surface that is both permeable and convectively heated, with the added feature of slip velocity. In contrast to Darcy’s Law, the current model incorporates the use of Forchheimer’s Law, which accounts for the non-linear resistance that becomes significant at higher flow velocities. The accomplishments of this study hold significant relevance, both in terms of theoretical advancements in mathematical modeling of Casson fluid flow with heat mass transfer in engineering systems, as well as in the context of practical engineering cooling applications. The study takes into account the collective influences of magnetic field, suction mechanism, convective heating, heat generation, viscous dissipation, and chemical reactions. The research incorporates the consideration of fluid properties that vary with respect to temperature or concentration, and solves the governing equations by employing similarity transformations and the shooting approach. The heat transfer process is significantly affected by the presence of heat generation and viscous dissipation. Furthermore, the study illustrates and presents the impact of various physical factors on the dimensionless temperature, velocity, and concentration. From an engineering perspective, the local Nusselt number, the skin friction, and local Sherwood number are also depicted and provided in graphical and tabular formats. In the domains of energy engineering and thermal management in particular, these results have practical relevance in improving our understanding of heat transmission in similar settings. Finally, the thorough comparison analysis reveals a significant level of alignment with the outcomes of the earlier investigations, thus validating the reliability and effectiveness of our obtained results. |
---|---|
ISSN: | 1776-0852 1402-9251 1776-0852 |
DOI: | 10.1007/s44198-024-00183-3 |