Quasi‐Newton variable preconditioning for nonlinear elasticity systems in 3D

Summary Quasi‐Newton iterations are constructed for the finite element solution of small‐strain nonlinear elasticity systems in 3D. The linearizations are based on spectral equivalence and hence considered as variable preconditioners arising from proper simplifications in the differential operator....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical linear algebra with applications 2024-05, Vol.31 (3), p.n/a
Hauptverfasser: Karátson, J., Sysala, S., Béreš, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary Quasi‐Newton iterations are constructed for the finite element solution of small‐strain nonlinear elasticity systems in 3D. The linearizations are based on spectral equivalence and hence considered as variable preconditioners arising from proper simplifications in the differential operator. Convergence is proved, providing bounds uniformly w.r.t. the FEM discretization. Convenient iterative solvers for linearized systems are also proposed. Numerical experiments in 3D confirm that the suggested quasi‐Newton methods are competitive with Newton's method.
ISSN:1070-5325
1099-1506
DOI:10.1002/nla.2537