Single‐molecule fluorescence microscopy for imaging chemical reactions: Recent progress and future opportunities for advancing polymer systems
Single‐molecule fluorescence (smFL) imaging techniques have evolved greatly over the past two decades to encompass the ability to monitor chemical reactions, providing unique advantages of non‐invasive sample preparation and characterization, labeling specificity, and high spatial and temporal resol...
Gespeichert in:
Veröffentlicht in: | Journal of polymer science (2020) 2024-04, Vol.62 (7), p.1235-1259 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Single‐molecule fluorescence (smFL) imaging techniques have evolved greatly over the past two decades to encompass the ability to monitor chemical reactions, providing unique advantages of non‐invasive sample preparation and characterization, labeling specificity, and high spatial and temporal resolutions. This work summarizes the recent progress in this important area by first providing a brief overview of different smFL techniques, including their common optical setups and working principles. We then introduce recent developments of smFL to characterize various model chemical reaction systems, such as biochemical synthesis, catalyzed systems, and nanomaterial assembly. Furthermore, several representative areas of using smFL to understand polymer reactions are discussed, including understanding interfacial phenomenon and polymerization kinetics, as well as characterizing electrochemical reactions. We also highlight the outlook of this exciting field and potential opportunities for further development and application of smFL to enable advances in polymer chemistry and physics. |
---|---|
ISSN: | 2642-4150 2642-4169 |
DOI: | 10.1002/pol.20230621 |