Spatial growth rates of young wind waves under steady wind forcing
The growth with fetch of young wind waves under steady wind forcing that is commonly attributed to shear flow instability results in a spatially inhomogeneous wave field with a spectrum evolving along the tank. The present laboratory study accounts for multiple co-existing statistically stationary r...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2024-04, Vol.984, Article A22 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The growth with fetch of young wind waves under steady wind forcing that is commonly attributed to shear flow instability results in a spatially inhomogeneous wave field with a spectrum evolving along the tank. The present laboratory study accounts for multiple co-existing statistically stationary random frequency harmonics. Single-point synchronous measurements of the instantaneous surface elevation and of its along-wind slope component are performed by optical methods at numerous locations. Assuming exponential spatial growth, the phase shift between the surface elevation and surface slope at each frequency is related to the spatial growth rate of each harmonic. The validity of the assumption that the wave energy varies exponentially with fetch is examined in a separate set of experiments; the instantaneous surface elevation at various wind-forcing conditions is measured at multiple locations along the tank. The spatial variation of the energy of individual frequency harmonics is determined. It is found that, below the local peak frequency, the energy of each harmonic grows exponentially, while the evolution of waves at frequencies approaching and exceeding the local peak is strongly affected by sheltering by the dominant wave, as well as by nonlinear bound waves. The outcomes of two independent methods of determination of spatial growth rates at a range of young wave frequencies are compared. The accumulated data also enable quantitative analysis of the sheltering phenomenon. The essential difference between the spatial and the temporal wind-wave evolution cases is discussed. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2024.228 |