Odd strength spherical designs attaining the Fazekas–Levenshtein bound for covering and universal minima of potentials

We characterize the cases of existence of spherical designs of an odd strength attaining the Fazekas–Levenshtein bound for covering and prove some of their properties. We also find all universal minima of the potential of regular spherical configurations in two new cases: the demihypercube on S d ,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aequationes mathematicae 2024-04, Vol.98 (2), p.509-533
1. Verfasser: Borodachov, Sergiy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We characterize the cases of existence of spherical designs of an odd strength attaining the Fazekas–Levenshtein bound for covering and prove some of their properties. We also find all universal minima of the potential of regular spherical configurations in two new cases: the demihypercube on S d , d ≥ 4 , and the 2 41 polytope on S 7 (which is dual to the E 8 lattice).
ISSN:0001-9054
1420-8903
DOI:10.1007/s00010-024-01036-6