Odd strength spherical designs attaining the Fazekas–Levenshtein bound for covering and universal minima of potentials
We characterize the cases of existence of spherical designs of an odd strength attaining the Fazekas–Levenshtein bound for covering and prove some of their properties. We also find all universal minima of the potential of regular spherical configurations in two new cases: the demihypercube on S d ,...
Gespeichert in:
Veröffentlicht in: | Aequationes mathematicae 2024-04, Vol.98 (2), p.509-533 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We characterize the cases of existence of spherical designs of an odd strength attaining the Fazekas–Levenshtein bound for covering and prove some of their properties. We also find all universal minima of the potential of regular spherical configurations in two new cases: the demihypercube on
S
d
,
d
≥
4
, and the
2
41
polytope on
S
7
(which is dual to the
E
8
lattice). |
---|---|
ISSN: | 0001-9054 1420-8903 |
DOI: | 10.1007/s00010-024-01036-6 |