Counting the number of non-isotopic Taniguchi semifields

We investigate the isotopy question for Taniguchi semifields. We give a complete characterization when two Taniguchi semifields are isotopic. We further give precise upper and lower bounds for the total number of non-isotopic Taniguchi semifields, proving that there are around p m + s non-isotopic T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Designs, codes, and cryptography codes, and cryptography, 2024-03, Vol.92 (3), p.681-694
Hauptverfasser: Göloğlu, Faruk, Kölsch, Lukas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 694
container_issue 3
container_start_page 681
container_title Designs, codes, and cryptography
container_volume 92
creator Göloğlu, Faruk
Kölsch, Lukas
description We investigate the isotopy question for Taniguchi semifields. We give a complete characterization when two Taniguchi semifields are isotopic. We further give precise upper and lower bounds for the total number of non-isotopic Taniguchi semifields, proving that there are around p m + s non-isotopic Taniguchi semifields of order p 2 m where s is the largest divisor of m with 2 s ≠ m . This result proves that the family of Taniguchi semifields is (asymptotically) the largest known family of semifields of odd order. The key ingredient of the proofs is a technique to determine isotopy that uses group theory to exploit the existence of certain large subgroups of the autotopism group of a semifield.
doi_str_mv 10.1007/s10623-023-01262-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3015442471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3015442471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-4d03151485d5777d7ef69bd3d621d2d3b2cd20a7ebce709ffef5937a9f75a0a83</originalsourceid><addsrcrecordid>eNp9kLFOwzAURS0EEqXwA0yRmA3v2XGcjKgCilSJpcyWE9utq9YudjLw9yQKEhvD1VvOuU-6hNwjPCKAfMoIFeMUpiCrGIULskAhOZWiri7JAhomKAJj1-Qm5wMAIAe2IPUqDqH3YVf0e1uE4dTaVERXhBioz7GPZ98VWx38buj2vsj25J23R5NvyZXTx2zvfu-SfL6-bFdruvl4e189b2jHsexpaYCjwLIWRkgpjbSualrDTcXQMMNb1hkGWtq2sxIa56wTDZe6cVJo0DVfkoe595zi12Bzrw5xSGF8qTigKEtWShwpNlNdijkn69Q5-ZNO3wpBTQupeSEFU6aFFIwSn6U8wmFn01_1P9YP9hJoPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3015442471</pqid></control><display><type>article</type><title>Counting the number of non-isotopic Taniguchi semifields</title><source>Springer Nature - Complete Springer Journals</source><creator>Göloğlu, Faruk ; Kölsch, Lukas</creator><creatorcontrib>Göloğlu, Faruk ; Kölsch, Lukas</creatorcontrib><description>We investigate the isotopy question for Taniguchi semifields. We give a complete characterization when two Taniguchi semifields are isotopic. We further give precise upper and lower bounds for the total number of non-isotopic Taniguchi semifields, proving that there are around p m + s non-isotopic Taniguchi semifields of order p 2 m where s is the largest divisor of m with 2 s ≠ m . This result proves that the family of Taniguchi semifields is (asymptotically) the largest known family of semifields of odd order. The key ingredient of the proofs is a technique to determine isotopy that uses group theory to exploit the existence of certain large subgroups of the autotopism group of a semifield.</description><identifier>ISSN: 0925-1022</identifier><identifier>EISSN: 1573-7586</identifier><identifier>DOI: 10.1007/s10623-023-01262-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Coding and Cryptography 2022 ; Coding and Information Theory ; Computer Science ; Cryptology ; Discrete Mathematics in Computer Science ; Group theory ; Lower bounds ; Subgroups</subject><ispartof>Designs, codes, and cryptography, 2024-03, Vol.92 (3), p.681-694</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-4d03151485d5777d7ef69bd3d621d2d3b2cd20a7ebce709ffef5937a9f75a0a83</cites><orcidid>0000-0002-2966-0710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10623-023-01262-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10623-023-01262-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Göloğlu, Faruk</creatorcontrib><creatorcontrib>Kölsch, Lukas</creatorcontrib><title>Counting the number of non-isotopic Taniguchi semifields</title><title>Designs, codes, and cryptography</title><addtitle>Des. Codes Cryptogr</addtitle><description>We investigate the isotopy question for Taniguchi semifields. We give a complete characterization when two Taniguchi semifields are isotopic. We further give precise upper and lower bounds for the total number of non-isotopic Taniguchi semifields, proving that there are around p m + s non-isotopic Taniguchi semifields of order p 2 m where s is the largest divisor of m with 2 s ≠ m . This result proves that the family of Taniguchi semifields is (asymptotically) the largest known family of semifields of odd order. The key ingredient of the proofs is a technique to determine isotopy that uses group theory to exploit the existence of certain large subgroups of the autotopism group of a semifield.</description><subject>Coding and Cryptography 2022</subject><subject>Coding and Information Theory</subject><subject>Computer Science</subject><subject>Cryptology</subject><subject>Discrete Mathematics in Computer Science</subject><subject>Group theory</subject><subject>Lower bounds</subject><subject>Subgroups</subject><issn>0925-1022</issn><issn>1573-7586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAURS0EEqXwA0yRmA3v2XGcjKgCilSJpcyWE9utq9YudjLw9yQKEhvD1VvOuU-6hNwjPCKAfMoIFeMUpiCrGIULskAhOZWiri7JAhomKAJj1-Qm5wMAIAe2IPUqDqH3YVf0e1uE4dTaVERXhBioz7GPZ98VWx38buj2vsj25J23R5NvyZXTx2zvfu-SfL6-bFdruvl4e189b2jHsexpaYCjwLIWRkgpjbSualrDTcXQMMNb1hkGWtq2sxIa56wTDZe6cVJo0DVfkoe595zi12Bzrw5xSGF8qTigKEtWShwpNlNdijkn69Q5-ZNO3wpBTQupeSEFU6aFFIwSn6U8wmFn01_1P9YP9hJoPQ</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Göloğlu, Faruk</creator><creator>Kölsch, Lukas</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2966-0710</orcidid></search><sort><creationdate>20240301</creationdate><title>Counting the number of non-isotopic Taniguchi semifields</title><author>Göloğlu, Faruk ; Kölsch, Lukas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-4d03151485d5777d7ef69bd3d621d2d3b2cd20a7ebce709ffef5937a9f75a0a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coding and Cryptography 2022</topic><topic>Coding and Information Theory</topic><topic>Computer Science</topic><topic>Cryptology</topic><topic>Discrete Mathematics in Computer Science</topic><topic>Group theory</topic><topic>Lower bounds</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Göloğlu, Faruk</creatorcontrib><creatorcontrib>Kölsch, Lukas</creatorcontrib><collection>CrossRef</collection><jtitle>Designs, codes, and cryptography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Göloğlu, Faruk</au><au>Kölsch, Lukas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Counting the number of non-isotopic Taniguchi semifields</atitle><jtitle>Designs, codes, and cryptography</jtitle><stitle>Des. Codes Cryptogr</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>92</volume><issue>3</issue><spage>681</spage><epage>694</epage><pages>681-694</pages><issn>0925-1022</issn><eissn>1573-7586</eissn><abstract>We investigate the isotopy question for Taniguchi semifields. We give a complete characterization when two Taniguchi semifields are isotopic. We further give precise upper and lower bounds for the total number of non-isotopic Taniguchi semifields, proving that there are around p m + s non-isotopic Taniguchi semifields of order p 2 m where s is the largest divisor of m with 2 s ≠ m . This result proves that the family of Taniguchi semifields is (asymptotically) the largest known family of semifields of odd order. The key ingredient of the proofs is a technique to determine isotopy that uses group theory to exploit the existence of certain large subgroups of the autotopism group of a semifield.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10623-023-01262-0</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2966-0710</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-1022
ispartof Designs, codes, and cryptography, 2024-03, Vol.92 (3), p.681-694
issn 0925-1022
1573-7586
language eng
recordid cdi_proquest_journals_3015442471
source Springer Nature - Complete Springer Journals
subjects Coding and Cryptography 2022
Coding and Information Theory
Computer Science
Cryptology
Discrete Mathematics in Computer Science
Group theory
Lower bounds
Subgroups
title Counting the number of non-isotopic Taniguchi semifields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A45%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Counting%20the%20number%20of%20non-isotopic%20Taniguchi%20semifields&rft.jtitle=Designs,%20codes,%20and%20cryptography&rft.au=G%C3%B6lo%C4%9Flu,%20Faruk&rft.date=2024-03-01&rft.volume=92&rft.issue=3&rft.spage=681&rft.epage=694&rft.pages=681-694&rft.issn=0925-1022&rft.eissn=1573-7586&rft_id=info:doi/10.1007/s10623-023-01262-0&rft_dat=%3Cproquest_cross%3E3015442471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3015442471&rft_id=info:pmid/&rfr_iscdi=true