Counting the number of non-isotopic Taniguchi semifields

We investigate the isotopy question for Taniguchi semifields. We give a complete characterization when two Taniguchi semifields are isotopic. We further give precise upper and lower bounds for the total number of non-isotopic Taniguchi semifields, proving that there are around p m + s non-isotopic T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Designs, codes, and cryptography codes, and cryptography, 2024-03, Vol.92 (3), p.681-694
Hauptverfasser: Göloğlu, Faruk, Kölsch, Lukas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the isotopy question for Taniguchi semifields. We give a complete characterization when two Taniguchi semifields are isotopic. We further give precise upper and lower bounds for the total number of non-isotopic Taniguchi semifields, proving that there are around p m + s non-isotopic Taniguchi semifields of order p 2 m where s is the largest divisor of m with 2 s ≠ m . This result proves that the family of Taniguchi semifields is (asymptotically) the largest known family of semifields of odd order. The key ingredient of the proofs is a technique to determine isotopy that uses group theory to exploit the existence of certain large subgroups of the autotopism group of a semifield.
ISSN:0925-1022
1573-7586
DOI:10.1007/s10623-023-01262-0