Integrating Human Insights Into Text Analysis: Semi-Supervised Topic Modeling of Emerging Food-Technology Businesses’ Brand Communication on Social Media

Textual social media data have become indispensable to researchers’ understanding of message strategies and other marketing practices. In a new departure for the field of brand communication, this study adopts and extends a semi-supervised machine-learning approach, guided latent Dirichlet allocatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Social science computer review 2024-04, Vol.42 (2), p.416-437
Hauptverfasser: Su, Leona Yi-Fan, Chen, Tianli, Ng, Yee Man Margaret, Gong, Ziyang, Wang, Yi-Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Textual social media data have become indispensable to researchers’ understanding of message strategies and other marketing practices. In a new departure for the field of brand communication, this study adopts and extends a semi-supervised machine-learning approach, guided latent Dirichlet allocation (LDA), which incorporates human insights into the discovery and classification of topics. We used it to analyze tweets from businesses involved with an emerging food technology, cultured meat, and delineated four key message strategies used by these brands: providing functional, educational, corporate social responsibility, and relational content. We further ascertained the relationships between brands and the key topics embedded in their Twitter data. A comparison of model performance suggests that guided LDA can be an advantageous alternative to traditional LDA, which is characterized by high efficiency and immense popularity among researchers, but—because of its unsupervised nature—yields findings that can be difficult to interpret. The present study therefore has critical theoretical and methodological implications for communication and marketing scholars.
ISSN:0894-4393
1552-8286
DOI:10.1177/08944393231184532