On Hamiltonian Property of Cayley Digraphs

Let G be a finite group generated by S and C ( G, S ) the Cayley digraphs of G with connection set S . In this paper, we give some sufficient conditions for the existence of hamiltonian circuit in C ( G, S ), where G = Z m ⋊ H is a semiproduct of Z m by a subgroup H of G . In particular, if m is a p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta Mathematicae Applicatae Sinica 2024-04, Vol.40 (2), p.547-556
Hauptverfasser: Duan, Fang, Huang, Qiong-xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a finite group generated by S and C ( G, S ) the Cayley digraphs of G with connection set S . In this paper, we give some sufficient conditions for the existence of hamiltonian circuit in C ( G, S ), where G = Z m ⋊ H is a semiproduct of Z m by a subgroup H of G . In particular, if m is a prime, then the Cayley digraph of G has a hamiltonian circuit unless G = Z m × H . In addition, we introduce a new digraph operation, called φ -semiproduct of Γ 1 by Γ 2 and denoted by Γ 1 ⋊ φ Γ 2 , in terms of mapping φ : V (Γ 2 ) → {1, −1}. Furthermore we prove that C ( Z m , { a }) ⋊ φ C ( H, S ) is also a Cayley digraph if φ is a homomorphism from H to { 1 , − 1 } ≤ Z m ∗ , which produces some classes of Cayley digraphs that have hamiltonian circuits.
ISSN:0168-9673
1618-3932
DOI:10.1007/s10255-024-1023-9