Home Sweet Home: Setting the Best Thriving Conditions for the Ad Hoc Engineered Microbial Consortium in the Zero Mile System

Wastewaters from household appliances, such as dishwashers and washing machines, are an untapped resource of recoverable water and/or nutrients. The Zero Mile system has been developed to reuse/upcycle dishwasher wastewaters through bioremediation activity carried out by an ad hoc engineered phototr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2024-03, Vol.16 (6), p.2227
Hauptverfasser: Alabiso, Annamaria, Frasca, Sara, Bartolini, Matteo, Congestri, Roberta, D’Andrea, Marco Maria, Buratti, Giorgio, Costa, Fiammetta, Meraviglia, Matteo, Nebuloni, Attilio, Migliore, Luciana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wastewaters from household appliances, such as dishwashers and washing machines, are an untapped resource of recoverable water and/or nutrients. The Zero Mile system has been developed to reuse/upcycle dishwasher wastewaters through bioremediation activity carried out by an ad hoc engineered phototrophic/heterotrophic microbial consortium. The choice of both suitable microorganisms for engineering consortia and detailed knowledge on their structure, behaviour and interaction are essential to optimising consortium culture conditions and drive the biofilter container design (structure and topology). To these aims, the effect of abiotic conditions (i.e., irradiance, pH and organic load) on the microbial consortium growth and its capability to survive and thrive in different dishwasher wastewater dilutions have been evaluated. At the same time, the crucial interplay between biological and design research has allowed us to define the characteristics of the biofilter container and plan its development for the industrial application of the Zero Mile system, bringing sustainability benefits as it moves household wastewater from a traditional linear model to a more sustainable, circular approach.
ISSN:2071-1050
2071-1050
DOI:10.3390/su16062227