Process Intensification in Human Pluripotent Stem Cell Expansion with Microcarriers
Given the demands human induced pluripotent stem cell (hiPSC)-based therapeutics place on manufacturing, process intensification strategies which rapidly ensure the desired cell quality and quantity should be considered. Within the context of antibody and vaccine manufacturing, one-step inoculation...
Gespeichert in:
Veröffentlicht in: | Processes 2024-03, Vol.12 (3), p.426 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given the demands human induced pluripotent stem cell (hiPSC)-based therapeutics place on manufacturing, process intensification strategies which rapidly ensure the desired cell quality and quantity should be considered. Within the context of antibody and vaccine manufacturing, one-step inoculation has emerged as an effective strategy for intensifying the upstream process. This study therefore evaluated whether this approach could be applied to the expansion of hiPSCs in flasks under static and in microcarrier-operated stirred bioreactors under dynamic conditions. Our findings demonstrated that high density working cell banks containing hiPSCs at concentrations of up to 100 × 106 cells mL−1 in CryoStor® CS10 did not impair cell growth and quality upon thawing. Furthermore, while cell distribution, growth, and viability were comparable to routinely passaged hiPSCs, those subjected to one-step inoculation and expansion on microcarriers under stirred conditions were characterized by improved attachment efficiency (≈50%) following the first day of cultivation. Accordingly, the process development outlined in this study establishes the foundation for the implementation of this intensified approach at L-scale. |
---|---|
ISSN: | 2227-9717 2227-9717 |
DOI: | 10.3390/pr12030426 |